Energy News
TIME AND SPACE
Engineering quantum entanglement at the nanoscale
illustration only
Engineering quantum entanglement at the nanoscale
by Grant Currin for Columbia News
New York NY (SPX) Jan 14, 2025

Physicists have spent more than a century measuring and making sense of the strange ways that photons, electrons, and other subatomic particles interact at extremely small scales. Engineers have spent decades figuring out how to take advantage of these phenomena to create new technologies.

In one such phenomenon, called quantum entanglement, pairs of photons become interconnected in such a way that the state of one photon instantly changes to match the state of its paired photon, no matter how far apart they are.

Nearly 80 years ago, Albert Einstein referred to this phenomenon as "spooky action at a distance." Today, entanglement is the subject of research programs across the world - and it's becoming a favored way to implement the most fundamental form of quantum information, the qubit.

Currently, the most efficient way to create photon pairs requires sending lightwaves through a crystal large enough to see without a microscope. In a paper published in Nature Photonics, a team led by Columbia Engineering researchers and collaborators, describe a new method for creating these photon pairs that achieves higher performance on a much smaller device using less energy. P. James Schuck, associate professor of mechanical engineering at Columbia Engineering, helped lead the research team.

These findings represent a significant step forward in the field of nonlinear optics, which is concerned with using technologies to change the properties of light for applications including lasers, telecommunications, and laboratory equipment.

"This work represents the embodiment of the long-sought goal of bridging macroscopic and microscopic nonlinear and quantum optics," says Schuck, who co-directs Columbia's MS in Quantum Science and Technology. "It provides the foundation for scalable, highly efficient on-chip integrable devices such as tunable microscopic entangled-photon-pair generators."

How it works

Measuring just 3.4 micrometers thick, the new device points to a future where this important component of many quantum systems can fit onto a silicon chip. This change would enable significant gains in the energy efficiency and overall technical capabilities of quantum devices.

To create the device, the researchers used thin crystals of a so-called van der Waals semiconducting transition metal called molybdenum disulfide. Then they layered six of these crystal pieces into a stack, with each piece rotated 180 degrees relative to the crystal slabs above and below. As light travels through this stack, a phenomenon called quasi-phase-matching manipulates properties of the light, enabling the creation of paired photons.

This paper represents the first time that quasi-phase-matching in any van der Waals material has been used to generate photon pairs at wavelengths that are useful for telecommunications. The technique is significantly more efficient than previous methods and far less prone to error.

"We believe this breakthrough will establish van der Waals materials as the core of next-generation nonlinear and quantum photonic architectures, with them being ideal candidates for enabling all future on-chip technologies and replacing current bulk and periodically poled crystals," Schuck says.

"These innovations will have an immediate impact in diverse areas including satellite-based distribution and mobile phone quantum communication."

How it happened

Schuck and his team built on their previous work to develop the new device. In 2022, the group demonstrated that materials like molybdenum disulfide possess useful properties for nonlinear optics - but performance was limited by the tendency of light waves to interfere with one another while traveling through this material.

The team turned to a technique called periodic poling to counteract this problem, which is known as phase matching. By alternating the direction of the slabs in the stack, the device manipulates light in a way that enables photon pair generation at miniscule length scales.

"Once we understood how amazing this material was, we knew we had to pursue the periodic poling, which could allow for the highly efficient generation of photon pairs," Schuck says.

This work occurred within Programmable Quantum Materials, a Department of Energy energy frontier research center (EFRC) at Columbia, as part of a larger effort to understand and exploit quantum materials. This work was possible due to contributions from the Baso, Delor, and Dean labs. Postdoctoral researcher Chiara Trovatello led the effort.

Research Report:Quasi-phase-matched up- and down-conversion in periodically poled layered semiconductors

Related Links
Engineering at Columbia
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
New quantum sensing technology reveals sub-atomic signals
Philadelphia, PA (SPX) Jan 07, 2025
Since the 1950s, scientists have used radio waves to uncover the molecular "fingerprints" of unknown materials, aiding in tasks as varied as scanning the human body with MRI machines and detecting explosives at airports. These methods, however, rely on signals averaged from trillions of atoms, making it impossible to detect tiny variations between individual molecules. Such limitations hinder applications in fields like protein research, where small differences in shape control functionality and c ... read more

TIME AND SPACE
Explained: Generative AI's environmental impact

Climate science-denying energy secretary nominee calls for expanding U.S. energy sector

US energy firm Constellation to buy Calpine in $27 bn deal

How hard is it to prevent recurring blackouts in Puerto Rico?

TIME AND SPACE
New material reveals unconventional superconductivity hallmark

Fresh, direct evidence for tiny drops of quark-gluon plasma

Unlocking the potential of lithium-sulfur batteries

US Department of Energy invests $107 million in fusion energy innovation

TIME AND SPACE
Flinders University advances vertical wind turbine design

Secure cryptographic framework enhances collaboration in offshore wind energy

BP to 'significantly reduce' renewables investment

Baltic Sea wind farms impair Sweden's defence, says military

TIME AND SPACE
Light flexible and radiation resistant organic solar cells for space

Biophotovoltaics: a step forward in sustainable energy technology

Floating solar panels could advance US energy goals

Research explores wildfire smoke's effect on solar power generation across US

TIME AND SPACE
IEA forecasts record nuclear electricity production in 2025

Mongolia signs landmark mining deal with French nuclear giant

Raw materials from nuclear waste

AI powers modeling of safer sustainable nuclear reactors

TIME AND SPACE
From lab to field: CABBI pipeline delivers oil-rich sorghum

Breakthrough process converts CO2 and electricity into protein-rich food

The biobattery that needs to be fed

Breakthrough in sustainable energy with photochemical water oxidation

TIME AND SPACE
UK-Iraq London talks to mark 'new era'

Green hydrogen faces critical challenges in bridging ambition and reality

Sri Lanka signs landmark $3.7 bn deal with Chinese state oil giant

Nord Stream methane release highlights scale of emissions

TIME AND SPACE
US Fed withdraws from global climate change initiative

Trump pick for environment says climate change is 'real'

UK police charge two after Darwin's grave targeted

Dutch police detain hundreds at climate protest

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.