Energy harvesting to power the Internet of Things by Staff Writers Toulouse, France (SPX) Jun 14, 2022
The wireless interconnection of everyday objects known as the Internet of Things depends on wireless sensor networks that need a low but constant supply of electrical energy. This can be provided by electromagnetic energy harvesters that generate electricity directly from the environment. Lise-Marie Lacroix from the Universite de Toulouse, France, with colleagues from Toulouse, Grenoble and Atlanta, Georgia, USA, has used a mathematical technique, finite element simulation, to optimise the design of one such energy harvester so that it generates electricity as efficiently as possible. This work has now been published in the journal EPJ Special Topics. The Internet of Things consists of an enormous number of generally small, portable devices, each of which needs its own sustainable micro-energy source. Batteries are unsatisfactory for this as they will often need to be replaced or recharged. Many different technologies are being considered instead, with one of the most promising solutions being electromagnetic energy harvesting. An electromagnetic energy harvester consists of a vibrating plate holding an array of micromagnets facing and coupled with a parallel, static coil. Electrical energy is generated by the vibrating magnets and the amount of electricity that can enter a circuit depends on the design of the coil and magnet and the spacing between them. Lacroix and her team studied a system in which the magnets were state-of-the-art NdFeB ones - that is, they were composed from an alloy of the rare earth metal neodymium with iron and boron. They found that power could be optimised through a trade-off between the spacing of the magnets in the array and the number of turns in the coil; reducing the distance between coil and array and increasing the thickness of the magnets can also increase it. "We are now producing harvesters using the guidelines that we have developed through this study," she explains. These devices are likely to prove useful in the aerospace, automotive and biomedical sectors and others that have come to rely on the Internet of Things.
Research Report:Optimization of a vibrating MEMS electromagnetic energy harvester using simulations
UQ discovery paves the way for faster computers, longer-lasting batteries Brisbane, Australia (SPX) Jun 10, 2022 University of Queensland scientists have cracked a problem that's frustrated chemists and physicists for years, potentially leading to a new age of powerful, efficient, and environmentally friendly technologies. Using quantum mechanics, Professor Ben Powell from UQ's School of Mathematics and Physics has discovered a 'recipe' which allows molecular switches to work at room temperature. "Switches are materials that can shift between two or more states, such as on and off or 0 and 1, and are t ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |