Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
Electronics advance moves closer to a world beyond silicon
by Staff Writers
Corvallis OR (SPX) Sep 09, 2013


This MIIM diode has a layer of metals at each side and two insulators in between, an important advance in this new form of high speed electronics that is not limited by the use of silicon. (Image courtesy of Oregon State University).

Researchers in the College of Engineering at Oregon State University have made a significant advance in the function of metal-insulator-metal, or MIM diodes, a technology premised on the assumption that the speed of electrons moving through silicon is simply too slow.

For the extraordinary speed envisioned in some future electronics applications, these innovative diodes solve problems that would not be possible with silicon-based materials as a limiting factor.

The new diodes consist of a "sandwich" of two metals, with two insulators in between, to form "MIIM" devices. This allows an electron not so much to move through materials as to tunnel through insulators and appear almost instantaneously on the other side. It's a fundamentally different approach to electronics.

The newest findings, published in Applied Physics Letters, have shown that the addition of a second insulator can enable "step tunneling," a situation in which an electron may tunnel through only one of the insulators instead of both. This in turn allows precise control of diode asymmetry, non-linearity, and rectification at lower voltages.

"This approach enables us to enhance device operation by creating an additional asymmetry in the tunnel barrier," said John F. Conley, Jr., a professor in the OSU School of Electrical Engineering and Computer Science. "It gives us another way to engineer quantum mechanical tunneling and moves us closer to the real applications that should be possible with this technology."

OSU scientists and engineers, who only three years ago announced the creation of the first successful, high-performance MIM diode, are international leaders in this developing field. Conventional electronics based on silicon materials are fast and inexpensive, but are reaching the top speeds possible using those materials. Alternatives are being sought.

More sophisticated microelectronic products could be possible with the MIIM diodes - not only improved liquid crystal displays, cell phones and TVs, but such things as extremely high-speed computers that don't depend on transistors, or "energy harvesting" of infrared solar energy, a way to produce energy from the Earth as it cools during the night.

MIIM diodes could be produced on a huge scale at low cost, from inexpensive and environmentally benign materials. New companies, industries and high-tech jobs may ultimately emerge from advances in this field, OSU researchers say.

The work by Conley and OSU doctoral student Nasir Alimardani has been supported by the National Science Foundation, the U.S. Army Research Laboratory and the Oregon Nanoscience and Microtechnologies Institute.

.


Related Links
Oregon State University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Wiring microbes to conduct and produce electricity faster
Galway, Ireland (SPX) Sep 09, 2013
A team of researchers in Ireland have found evidence that altering the chemistry of an electrode surface (surface engineering) can help microbial communities to connect to the electrode to produce more electricity (electron-exchange) more rapidly compared to unmodified electrodes. Electron exchange is at the heart of all redox reactions occurring in the natural world, as well as in bioengineered ... read more


ENERGY TECH
Time for Investors to Hunker Down

NREL Study Suggests Cost Gap for Western Renewables Could Narrow by 2025

Berlin Senate opposes municipalization of city power grid

Non-Hydro Renewables Triple Output in a Decade

ENERGY TECH
Philippines mulls removing 'Chinese' blocks at shoal

Shell opens compensation talks over massive Nigeria oil spill

Japan and India to push for better LNG pricing

Electronics advance moves closer to a world beyond silicon

ENERGY TECH
No evidence of residential property value impacts near US wind turbines

French court rejects planned wind farm near Mont Saint Michel

China to Remain Wind Power Market Leader in 2020

Localized wind power blowing more near homes, farms and factories

ENERGY TECH
New Connection between Stacked Solar Cells Can Handle Energy of 70,000 Suns

Cheaper Chinese solar panels are not due to low-cost labor

Solis Partners Urges N.J. Commercial Property Owners to Apply Now for PSE and G's Solar Loan III Program

Global Solar Inverter Shipments Fall for the First Time in Seven Quarters

ENERGY TECH
AREVA completes first major component decontamination in France

S. Korea ex-vice minister charged in nuclear graft probe

Fukushima far from solved, say Abe's Games critics

London Olympics-style authority touted to build British nuke plants

ENERGY TECH
Canadian scientists unravel camelina biofuel genome

New possibilities for efficient biofuel production

Microbial Who-Done-It For Biofuels

Microorganisms found in salt flats could offer new path to green hydrogen fuel

ENERGY TECH
China civilian technology satellites put into use

China to launch lunar lander by end of year: media

China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

ENERGY TECH
Insight into marine life's ability to adapt to climate change

Climate at five minutes to midnight: IPCC head

Clock ticking on 2015 climate talks deal: EU commissioner

The potential for successful climate predictions




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement