. Energy News .




.
ENERGY TECH
Electrical engineers build 'no-waste' laser
by Staff Writers
San Diego CA (SPX) Feb 10, 2012

This is UC San Diego postdoctoral researcher Mercedeh Khajavikhan at work in the optics laboratory. Credit: Josh Knoff, UC San Diego Jacobs School of Engineering.

A team of University of California, San Diego researchers has built the smallest room-temperature nanolaser to date, as well as an even more startling device: a highly efficient, "thresholdless" laser that funnels all its photons into lasing, without any waste.

The two new lasers require very low power to operate, an important breakthrough since lasers usually require greater and greater "pump power" to begin lasing as they shrink to nano sizes. The small size and extremely low power of these nanolasers could make them very useful components for future optical circuits packed on to tiny computer chips, Mercedeh Khajavikhan and her UC San Diego Jacobs School of Engineering colleagues report in the Feb. 9 issue of the journal Nature.

They suggest that the thresholdless laser may also help researchers as they develop new metamaterials, artificially structured materials that are already being studied for applications from super-lenses that can be used to see individual viruses or DNA molecules to "cloaking" devices that bend light around an object to make it appear invisible.

All lasers require a certain amount of "pump power" from an outside source to begin emitting a coherent beam of light or "lasing," explained Yeshaiahu (Shaya) Fainman, a professor in the Department of Electrical and Computer Engineering at UC San Diego and co-author of the new study. A laser's threshold is the point where this coherent output is greater than any spontaneous emission produced.

The smaller a laser is, the greater the pump power needed to reach the point of lasing. To overcome this problem, the UC San Diego researchers developed a design for the new lasers that uses quantum electrodynamic effects in coaxial nanocavities to alleviate the threshold constraint.

Like a coaxial cable hooked up to a television (only at a much smaller scale), the laser cavity consists of a metal rod enclosed by a ring of metal-coated, quantum wells of semiconductor material. Khajavikhan and the rest of the team built the thresholdless laser by modifying the geometry of this cavity.

The new design also allowed them to build the smallest room-temperature, continuous wave laser to date. The new room-temperature nanoscale coaxial laser is more than an order of magnitude smaller than their previous record smallest nanolaser published in Nature Photonics less than two years ago. The whole device is almost half a micron in diameter - by comparison, the period at the end of this sentence is nearly 600 microns wide.

These highly efficient lasers would be useful in augmenting future computing chips with optical communications, where the lasers are used to establish communication links between distant points on the chip. Only a small amount of pump power would be required to reach lasing, reducing the number of photons needed to transmit information, said Fainman.

The nanolaser designs appear to be scalable - meaning that they could be shrunk to even smaller sizes - an extremely important feature that makes it possible to harvest laser light from even smaller nanoscale structures, the researchers note. This feature eventually could make them useful for creating and analyzing metamaterials with structures smaller than the wavelength of light currently emitted by the lasers.

Fainman said other applications for the new lasers could include tiny biochemical sensors or high-resolution displays, but the researchers are still working out the theory behind how these tiny lasers operate. They would also like to find a way to pump the lasers electrically instead of optically.

Related Links
University of California - San Diego
Powering The World in the 21st Century at Energy-Daily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ENERGY TECH
New technology platform for molecule-based electronics
Copenhagen, Denmark (SPX) Feb 10, 2012
Researchers at the Nano-Science Center at the University of Copenhagen have developed a new nano-technology platform for the development of molecule-based electronic components using the wonder material graphene. At the same time, they have solved a problem that has challenged researchers from around world for ten years. Since its discovery in 2004, graphene has been called a wonder materi ... read more


ENERGY TECH
Germany forced to tap into electricity reserves

China to face electricity shortages?

ENERGY TECH
Developing a Potential Low Cost Alternative to Platinum for Splitting Water

Gulf of Mexico spill: Weatherford says exonerated by court

Iraq begins pumping oil to new Gulf terminal

New technology platform for molecule-based electronics

ENERGY TECH
New EU wind power capacity near level

ENERGY TECH
Industry welcomes renewed commitment to Solar Flagships program

AORA Solar Launches "Always-On" Solar Power Station in Spain

Solar Inverter Market Hits Speed Bump in 2011

Solarcells work better in two wavelengths

ENERGY TECH
Poland's first nuclear plant delayed five years to 2025

Areva-UraMin deal followed suspicious trading: report

Thousands rally against nuclear power in Japan

Japan OKs $8.9 bn aid as TEPCO loss worsens

ENERGY TECH
Study: Mandating ethanol wrong solution

Sustainable land use strategies to support bioenergy

Fuel from market waste

Enerkem and GreenField Ethanol Announce Quebec's First Waste-to-Biofuels Production Facility

ENERGY TECH
Space-tracking ship Yuanwang VI concludes trip

China's new rockets expected to debut within five years

ENERGY TECH
Early farmers may have impacted climate

Libya fallout fans Sahel hunger pangs as crisis looms

2C warming goal now 'optimistic' - French scientists

Mauritania goes hungry amid Sahel food crisis: WFP


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement