. Energy News .




.
ENERGY TECH
Drexel's Gogotsi Questions Accuracy of Battery Performance Metrics
by Staff Writers
Philadelphia, PA (SPX) Dec 01, 2011

Dr. Yury Gogotsi (left) of Drexel and Dr. Patrice Simon authored a piece in Science Magazine questioning current methods of measuring battery efficiency.

Solving the mystery of prematurely dead cell phone and laptop batteries may prove to be a vital step toward creating a sustainable energy grid according to Drexel researcher Dr. Yury Gogotsi.

In a piece published in the November 18 edition of Science, Gogotsi, who is the head of the A.J. Drexel Nanotechnology Institute, calls for a new, standardized gauge of performance measurement for energy storage devices that are as small as those used in cell phones to as large as those used in the national energy grid.

Gogotsi is one of the featured experts, along with Bill Gates, tapped by Science to address problems that must be solved en route to the widespread use of renewable energy. His piece, co-authored with Dr. Patrice Simon of the Universite Paul Sabatier in Toulouse, France, is entitled "True Performance Metrics in Electrochemical Energy Storage."

"A dramatic expansion of research in the area of electrochemical energy storage has occurred over the past due to an ever increasing variety of handheld electronic devices that we all use," Gogotsi said.

"This has expanded use of electrical energy in transportation, and the need to store renewable energy efficiently at the grid level. This process has been accompanied by the chase for glory with the arrival of new materials and technologies that leads to unrealistic expectations for batteries and supercapacitors and may hurt the entire energy storage field."

The main type of energy storage device addressed in the article is the supercapacitor. Supercapacators, which are built from relatively inexpensive natural materials such as carbon, aluminum and polymers, are found in devices, ranging from mobile phones and laptop batteries to trams, buses and solar cells.

While supercapacitors tend to store less energy compared to standard lithium-ion batteries, they have the ability to charge and discharge energy more quickly than batteries and can be recharged a near infinite number of times, and operate in a wider temperature range with a high efficiency.

Typically, the performance of both, batteries and supercapacitors, is presented using Ragone plots, graphs that show a relation between the energy density and the power density.

For example, a Rangone plot for the battery used in an electric car shows both how far it can travel on a single charge -energy density- and how fast the car can travel -power density. An ideal energy storage device is expected to store plenty of energy and do it quickly.

The issue that Gogotsi and Simon bring to light is the idea that current metrics for grading energy storage devices, including the Ragone plot, may not provide a complete picture of the devices' capability. According to the researchers, other metrics, such as a device's cycle lifetime, energy efficiency, self-discharge, temperature range of operation and cost, must also be reported.

"This paper calls upon the community of scientists and engineers who work on supercapacitors to present data on material performance using metrics beyond the traditional Ragone plot," Simon said.

"Although such plots are useful for comparing fully packaged commercial devices, they might predict unrealistic performance for packaged cells from extrapolation of small amounts of materials."

Gogotsi and Simon have a longtime research collaboration, investigating materials for supercapacitors. Their joint work has received global coverage and various awards and distinctions. Funding for the collaboration between Gogotsi and Simon is sponsored by the Partner University Fund (PUF) which supports innovative and sustainable partnerships between French and US institutions of research and higher education.

Related Links
Drexel University
Powering The World in the 21st Century at Energy-Daily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ENERGY TECH
Nanoparticle electrode for batteries could make grid-scale power storage feasible
Stanford CA (SPX) Nov 30, 2011
The sun doesn't always shine and the breeze doesn't always blow and therein lie perhaps the biggest hurdles to making wind and solar power usable on a grand scale. If only there were an efficient, durable, high-power, rechargeable battery we could use to store large quantities of excess power generated on windy or sunny days until we needed it. And as long as we're fantasizing, let's imagine the ... read more


ENERGY TECH
Ireland-Britain 'supergrid' said feasible

Half of greenhouse gases emitted by five nations: report

Banks lent 232 bln euros for coal plants: climate groups

China to raise industrial power prices: Xinhua

ENERGY TECH
Oil prices dip on weak China data

Greenpeace hijacks oil firms' Greenland talks

A smarter way to make ultraviolet light beams

Exxon's Kurdish deal has political fallout

ENERGY TECH
Suzlon revs up wind power

AREVA Wind M5000-135 offshore turbine evolves proven M5000 platform

New Bladed link to offshore code checking tools

Wind power to account for half of Danish energy use in 2020

ENERGY TECH
Jamie Hahn at PV Power Generation Mid-West and East Conference

New type of solar cell retains high efficiency for long periods

Making a light-harvesting antenna from scratch

Carmanah Installs Solar Rooftop PV System for Ontario Refrigeration Facility

ENERGY TECH
Brazil's nuclear plans stir up debate

Scrap all Fukushima nuclear reactors: governor

Namibia grants Australian firm licence for uranium mine

Hundreds hurt during German nuclear train demos: police

ENERGY TECH
E. Coli Bacteria Engineered to Eat Switchgrass and Make Transportation Fuels

OSU study questions cost-effectiveness of biofuels and their ability to cut fossil fuel use

Mast from classic racing yacht holds one of the keys to sustainable biofuels

Mite-y genomic resources for bioenergy crop protection

ENERGY TECH
15 patents granted for Chinese space docking technology

China plans major effort in pursuing manned space technology

Tiangong-1 orbiter enters long-term operation management

China launches two satellites: state media

ENERGY TECH
Permafrost loss worse climate peril than thought

Kyoto pullout by Canada would hurt UN talks: African nations

WWF warns on Danube drought

Saving millions of lives and protecting our climate through clean cooking options


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement