Energy News
ENERGY TECH
Dirt-powered fuel cell runs forever
The fuel cell in the lab. Insert - The fuel cell's 3D printed cap peeks above the ground. The cap keeps debris out of the device while enabling air flow.
Dirt-powered fuel cell runs forever
by Staff Writers for Northwestern News
Evanston IL (SPX) Jan 17, 2024

A Northwestern University-led team of researchers has developed a new fuel cell that harvests energy from microbes living in dirt.

About the size of a standard paperback book, the completely soil-powered technology could fuel underground sensors used in precision agriculture and green infrastructure. This potentially could offer a sustainable, renewable alternative to batteries, which hold toxic, flammable chemicals that leach into the ground, are fraught with conflict-filled supply chains and contribute to the ever-growing problem of electronic waste.

To test the new fuel cell, the researchers used it to power sensors measuring soil moisture and detecting touch, a capability that could be valuable for tracking passing animals. To enable wireless communications, the researchers also equipped the soil-powered sensor with a tiny antenna to transmit data to a neighboring base station by reflecting existing radio frequency signals.

Not only did the fuel cell work in both wet and dry conditions, but its power also outlasted similar technologies by 120%.

The research will be published Jan. 12 in the Proceedings of the Association for Computing Machinery on Interactive, Mobile, Wearable and Ubiquitous Technologies. The study authors also are releasing all designs, tutorials and simulation tools to the public, so others may use and build upon the research.

"The number of devices in the Internet of Things (IoT) is constantly growing," said Northwestern alumnus Bill Yen, who led the work. "If we imagine a future with trillions of these devices, we cannot build every one of them out of lithium, heavy metals and toxins that are dangerous to the environment. We need to find alternatives that can provide low amounts of energy to power a decentralized network of devices. In a search for solutions, we looked to soil microbial fuel cells, which use special microbes to break down soil and use that low amount of energy to power sensors. As long as there is organic carbon in the soil for the microbes to break down, the fuel cell can potentially last forever."

"These microbes are ubiquitous; they already live in soil everywhere," said Northwestern's George Wells, a senior author on the study. "We can use very simple engineered systems to capture their electricity. We're not going to power entire cities with this energy. But we can capture minute amounts of energy to fuel practical, low-power applications."

Wells is an associate professor of civil and environmental engineering at Northwestern's McCormick School of Engineering. Now a Ph.D. student at Stanford University, Yen started this project when he was an undergraduate researcher in Wells' laboratory.

Solutions for a dirty job
In recent years, farmers worldwide increasingly have adopted precision agriculture as a strategy to improve crop yields. The tech-driven approach relies on measuring precise levels of moisture, nutrients and contaminants in soil to make decisions that enhance crop health. This requires a widespread, dispersed network of electronic devices to continuously collect environmental data.

"If you want to put a sensor out in the wild, in a farm or in a wetland, you are constrained to putting a battery in it or harvesting solar energy," Yen said. "Solar panels don't work well in dirty environments because they get covered with dirt, do not work when the sun isn't out and take up a lot of space. Batteries also are challenging because they run out of power. Farmers are not going to go around a 100-acre farm to regularly swap out batteries or dust off solar panels."

To overcome these challenges, Wells, Yen and their collaborators wondered if they could instead harvest energy from the existing environment. "We could harvest energy from the soil that farmers are monitoring anyway," Yen said.

'Stymied efforts'
Making their first appearance in 1911, soil-based microbial fuel cells (MFCs) operate like a battery - with an anode, cathode and electrolyte. But instead of using chemicals to generate electricity, MFCs harvest electricity from bacteria that naturally donate electrons to nearby conductors. When these electrons flow from the anode to the cathode, it creates an electric circuit.

But in order for microbial fuel cells to operate without disruption, they need to stay hydrated and oxygenated - which is tricky when buried underground within dry dirt.

"Although MFCs have existed as a concept for more than a century, their unreliable performance and low output power have stymied efforts to make practical use of them, especially in low-moisture conditions," Yen said.

Winning geometry
With these challenges in mind, Yen and his team embarked on a two-year journey to develop a practical, reliable soil-based MFC. His expedition included creating - and comparing - four different versions. First, the researchers collected a combined nine months of data on the performance of each design. Then, they tested their final version in an outdoor garden.

The best-performing prototype worked well in dry conditions as well as within a water-logged environment. The secret behind its success: Its geometry. Instead of using a traditional design, in which the anode and cathode are parallel to one another, the winning fuel cell leveraged a perpendicular design.

Made of carbon felt (an inexpensive, abundant conductor to capture the microbes' electrons), the anode is horizontal to the ground's surface. Made of an inert, conductive metal, the cathode sits vertically atop the anode.

Although the entire device is buried, the vertical design ensures that the top end is flush with the ground's surface. A 3D-printed cap rests on top of the device to prevent debris from falling inside. And a hole on top and an empty air chamber running alongside the cathode enable consistent airflow.

The lower end of the cathode remains nestled deep beneath the surface, ensuring that it stays hydrated from the moist, surrounding soil - even when the surface soil dries out in the sunlight. The researchers also coated part of the cathode with waterproofing material to allow it to breathe during a flood. And, after a potential flood, the vertical design enables the cathode to dry out gradually rather than all at once.

On average, the resulting fuel cell generated 68 times more power than needed to operate its sensors. It also was robust enough to withstand large changes in soil moisture - from somewhat dry (41% water by volume) to completely underwater.

Making computing accessible
The researchers say all components for their soil-based MFC can be purchased at a local hardware store. Next, they plan to develop a soil-based MFC made from fully biodegradable materials. Both designs bypass complicated supply chains and avoid using conflict minerals.

"With the COVID-19 pandemic, we all became familiar with how a crisis can disrupt the global supply chain for electronics," said study co-author Josiah Hester, a former Northwestern faculty member who is now at the Georgia Institute of Technology. "We want to build devices that use local supply chains and low-cost materials so that computing is accessible for all communities." Research Report:Soil-Powered Computing: The Engineer's Guide to Practical Soil Microbial Fuel Cell Design

Related Links
Northwestern University
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
Study reveals a reaction at the heart of many renewable energy technologies
Boston MA (SPX) Jan 17, 2024
A key chemical reaction - in which the movement of protons between the surface of an electrode and an electrolyte drives an electric current - is a critical step in many energy technologies, including fuel cells and the electrolyzers used to produce hydrogen gas. For the first time, MIT chemists have mapped out in detail how these proton-coupled electron transfers happen at an electrode surface. Their results could help researchers design more efficient fuel cells, batteries, or other energy techn ... read more

ENERGY TECH
EU rules have failed to cut car C02 emissions: report

French waste group Veolia hungry for lost UK energy

IEA forecasts global surge in electricity demand amid shift to clean energy

Trade barriers can slow energy transition: IEA chief

ENERGY TECH
China's CALB wants lithium battery factory in Portugal

Cobalt-free batteries could power cars of the future

NASA's STTR Program Funds Innovative Small Business and Research Partnerships

Dirt-powered fuel cell runs forever

ENERGY TECH
European offshore wind enjoys record year in 2023

Leaf-shaped generators create electricity from the wind and rain

Danish firm to build huge wind farm off UK

UK unveils massive news windfarm investment by UAE, German firms

ENERGY TECH
Breakthrough in tin-based perovskite solar cells achieves 11 percent power conversion efficiency

Novel Cathode Interlayer Boosts Performance of Tin-Lead Perovskite Solar Cells

Space solar power project ends first in-space mission with successes and lessons

Insect populations flourish in the restored habitats of solar energy facilities

ENERGY TECH
Framatome and NCBJ Sign MOU to Advance Nuclear Technology Education in Poland

EDF says Hinkley Point C startup delayed, to cost more

UK govt to plough extra 1.3bn pounds into nuclear plant

Mines 'back in place' at Ukraine nuclear power plant: IAEA

ENERGY TECH
Synthetic aviation fuel has yet to take off in Europe: study

Ants help reveal why sourcing different plants for eco fuels is crucial for biodiversity

Researchers create light-powered yeast, providing insights into evolution, biofuels, cellular aging

Nigerians look to biofuel as cost of cooking gas soars

ENERGY TECH
Yemen's Huthis fire missiles at ships in Red Sea

Groundbreaking discovery enables cost-effective and eco-friendly green hydrogen production

Red Sea attacks latest threat to Yemen's decaying oil tanker

No injuries, damage after Huthi missiles miss US-owned tanker ship: CENTCOM

ENERGY TECH
ING targeted in new Dutch climate legal case

Kerry says to work on climate after exiting envoy role

Portugal to curb water use in south as drought bites

New UN climate chief wants more action on greenhouse gas

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.