Energy News  
ENERGY TECH
Devices that convert heat into electricity
by Staff Writers
Columbus OH (SPX) Jan 04, 2017


This is a scanning transmission electron microscope image of a nickel-platinum composite material created at The Ohio State University. At left, the image is overlaid with false-color maps of elements in the material, including platinum (red), nickel (green) and oxygen (blue). Image courtesy Isabel Boona, OSU Center for Electron Microscopy and Analysis; Left image prepared by Renee Ripley. Courtesy of The Ohio State University. For a larger version of this image please go here.

The same researchers who pioneered the use of a quantum mechanical effect to convert heat into electricity have figured out how to make their technique work in a form more suitable to industry.

In Nature Communications, engineers from The Ohio State University describe how they used magnetism on a composite of nickel and platinum to amplify the voltage output 10 times or more - not in a thin film, as they had done previously, but in a thicker piece of material that more closely resembles components for future electronic devices.

Many electrical and mechanical devices, such as car engines, produce heat as a byproduct of their normal operation. It's called "waste heat," and its existence is required by the fundamental laws of thermodynamics, explained study co-author Stephen Boona.

But a growing area of research called solid-state thermoelectrics aims to capture that waste heat inside specially designed materials to generate power and increase overall energy efficiency.

"Over half of the energy we use is wasted and enters the atmosphere as heat," said Boona, a postdoctoral researcher at Ohio State. "Solid-state thermoelectrics can help us recover some of that energy. These devices have no moving parts, don't wear out, are robust and require no maintenance. Unfortunately, to date, they are also too expensive and not quite efficient enough to warrant widespread use. We're working to change that."

In 2012, the same Ohio State research group, led by Joseph Heremans, demonstrated that magnetic fields could boost a quantum mechanical effect called the spin Seebeck effect, and in turn boost the voltage output of thin films made from exotic nano-structured materials from a few microvolts to a few millivolts.

In this latest advance, they've increased the output for a composite of two very common metals, nickel with a sprinkling of platinum, from a few nanovolts to tens or hundreds of nanovolts - a smaller voltage, but in a much simpler device that requires no nanofabrication and can be readily scaled up for industry.

Heremans, a professor of mechanical and aerospace engineering and the Ohio Eminent Scholar in Nanotechnology, said that, to some extent, using the same technique in thicker pieces of material required that he and his team rethink the equations that govern thermodynamics and thermoelectricity, which were developed before scientists knew about quantum mechanics. And while quantum mechanics often concerns photons - waves and particles of light - Heremans' research concerns magnons - waves and particles of magnetism.

"Basically, classical thermodynamics covers steam engines that use steam as a working fluid, or jet engines or car engines that use air as a working fluid. Thermoelectrics use electrons as the working fluid. And in this work, we're using quanta of magnetization, or 'magnons,' as a working fluid," Heremans said.

Research in magnon-based thermodynamics was up to now always done in thin films - perhaps only a few atoms thick - and even the best-performing films produce very small voltages.

In the 2012 paper, his team described hitting electrons with magnons to push them through thermoelectric materials. In the current Nature Communications paper, they've shown that the same technique can be used in bulk pieces of composite materials to further improve waste heat recovery.

Instead of applying a thin film of platinum on top of a magnetic material as they might have done before, the researchers distributed a very small amount of platinum nanoparticles randomly throughout a magnetic material - in this case, nickel. The resulting composite produced enhanced voltage output due to the spin Seebeck effect.

This means that for a given amount of heat, the composite material generated more electrical power than either material could on its own. Since the entire piece of composite is electrically conducting, other electrical components can draw the voltage from it with increased efficiency compared to a film.

While the composite is not yet part of a real-world device, Heremans is confident the proof-of-principle established by this study will inspire further research that may lead to applications for common waste heat generators, including car and jet engines.

The idea is very general, he added, and can be applied to a variety of material combinations, enabling entirely new approaches that don't require expensive metals like platinum or delicate processing procedures like thin-film growth.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ohio State University
Powering The World in the 21st Century at Energy-Daily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Lifetime of organic light-emitting diodes affected by impurities in vacuum
Fukuoka, Japan (UPI) Dec 28, 2016
The brightness of organic light-emitting diodes, or OLEDs, declines over time. Why exactly the lights degrade hasn't been entirely clear to scientists - until now. Researchers at Kyushu University in Japan determined impurities in the vacuum chamber during the OLED fabrication process explain degradation. The impurities are so minuscule they're often overlooked. OLEDs are made u ... read more


ENERGY TECH
China to build $1.5 billion power line across Pakistan

MIT Energy Initiative report provides guidance for evolving electric power sector

Toward energy solutions for northern regions

Energy-hungry Asia slowing down, lender says

ENERGY TECH
World's smallest electrical wire made from world's smallest diamonds

Lifetime of organic light-emitting diodes affected by impurities in vacuum

Bright future for energy devices

Scientists build bacteria-powered battery on single sheet of paper

ENERGY TECH
The answer is blowing in the wind

French power group aims to double wind capacity

New rules for micro-grids in Alberta

Offshore wind makes U.S. debut

ENERGY TECH
Stability challenge in perovskite solar cell technology

Tesla, Panasonic team up for solar power

First movie of energy transfer in photosynthesis solves decades-old debate

Ohio keeps renewable energy standards

ENERGY TECH
Battling energy crisis, Pakistan turns on fourth nuclear plant

Report finds additional radioactive materials in gas-well drill cuttings

Chemistry research breakthrough that could improve nuclear waste recycling technologies

AREVA NP supplies Safety Instrumentation and Control System for Generation 3 Reactor

ENERGY TECH
Economics of forest biomass raise hurdles for rural development

Biomass operations aren't currently feasible in rural communities

Molecular Velcro boosts microalgae's potential in biofuel, industrial applications

Ultrafast lasers reveal light-harvesting secrets of photosynthetic algae

ENERGY TECH
US Shale Is Now Cash Flow Neutral

Iran okays 29 companies for oil and gas projects

Crude oil prices strong out of 2017 gate

A first for European energy with French LNG

ENERGY TECH
Tillerson called to testify on climate issues

Seizing environmental opportunities under a Trump presidency

Climate report says 2016 on pace to be hottest year yet

Glee to gloom: Climate and the 'Trump effect'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.