DLR presents technologies for decarbonisation across the economy by Staff Writers Evora, Portugal (SPX) May 27, 2022
The German Aerospace Center will be presenting technologies, innovations and successful transfer and spin-off projects at Hannover Messe 2022. From 30 May to 2 June, at the 120-square-metre stand (Energy Solutions, Hall 13, D18), visitors will be able to gain an insight into DLR's research for a future climate-friendly energy supply system and for the decarbonisation of industrial processes and mobility. "Every day, new technologies emerge and valuable expertise is gained at DLR in the field of applied science. Together with partners from industry - from small and medium-sized companies to start-ups and global corporations - DLR brings these from the laboratory into practical use," says Karsten Lemmer, the DLR Executive Board member responsible for 'Innovation, Transfer and Research Infrastructure'. He will present selected projects during the live event (31 May 2022, 12:00 CEST, livestream) and will be available to answer questions.
Solar thermal with salt - for low-cost and controllable electricity from renewable sources This means that electricity can be provided up to 20 percent cheaper. Solar thermal power plants use concentrated sunlight to first generate heat and then electricity. They are one of the few options currently available for producing power using renewable resources in a continuous and controllable way. During a live event at the DLR stand (31 May 2022, 10:00 CEST, livestream), a direct link will be established to Portugal, which will broadcast an overview of the plant and short interviews with the researchers on site.
Technologies for low-carbon-dioxide industrial processes - process heat from renewable sources This will supply a factory operated by the Italian pasta manufacturer Barilla with process heat generated by renewable solar power around the clock. The centrepiece is a special radiation receiver in a solar tower power plant. This receiver works with ceramic particles that are heated to temperatures of up to 1000 degrees Celsius. The receiver system is manufactured by the company Heliogen under a DLR licence.
Wind energy research - on a large scale Using an instrumented rotor blade model, visitors to the DLR stand can experience and explore for themselves the forces and effects acting on the rotor blade of a wind turbine. Multimedia exhibits show data from the research park, convey the structure and focal points, and provide an insight into the production of rotor blades by DLR's industrial partner in the Hannover Messe partner country Portugal.
Climate-friendly mobility - bringing power-based fuels into use They are also indispensable for emission-free air transport - particularly on medium- and long-haul routes, where there are currently no technological alternatives. DLR is working with partners from industry and research to transfer the manufacturing processes from the laboratory - with the help of demonstration and pilot plants - to an industrial scale. This 'scaling up' is an essential step to make the technology suitable for industrial use and to be able to produce the large quantities required.
Industrialisation of hydrogen technologies A second DLR stand at the Hydrogen + Fuel Cells Europe exhibition (Hall 13, B40) will showcase current DLR projects on the production and use of hydrogen by means of electrolysis and fuel cells, and on storing the gas in salt caverns.
Further insights - ExoMatter spin-off project and DLR Quantum Computing Initiative Within the framework of the DLR Quantum Computing Initiative, prototype quantum computers of different architectures are to be built and the associated technologies and applications developed within the next four years. DLR is contributing its own skills and expertise from research and development. The establishment of an industrially sustainable ecosystem and the implementation in commercially relevant applications are the focal points.
Finding superconductivity in nickelates Austin TX (SPX) May 27, 2022 The study of superconductivity is littered with disappointments, dead-ends, and serendipitous discoveries, according to Antia Botana, professor of physics at Arizona State University. "As theorists, we generally fail in predicting new superconductors," she said. However, in 2021, she experienced the highlight of her early career. Working with experimentalist Julia Mundy at Harvard University, she discovered a new superconducting material -a quintuple-layer nickelate. They reported their find ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |