Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
Cambridge team breaks superconductor world record
by Staff Writers
Cambridge, UK (SPX) Jul 01, 2014


illustration only

A world record that has stood for more than a decade has been broken by a team led by University of Cambridge engineers, harnessing the equivalent of three tonnes of force inside a golf ball-sized sample of material that is normally as brittle as fine china.

The Cambridge researchers managed to 'trap' a magnetic field with a strength of 17.6 Tesla - roughly 100 times stronger than the field generated by a typical fridge magnet - in a high temperature gadolinium barium copper oxide (GdBCO) superconductor, beating the previous record by 0.4 Tesla. The results are published in the journal Superconductor Science and Technology.

The research demonstrates the potential of high-temperature superconductors for applications in a range of fields, including flywheels for energy storage, 'magnetic separators', which can be used in mineral refinement and pollution control, and in high-speed levitating monorail trains.

Superconductors are materials that carry electrical current with little or no resistance when cooled below a certain temperature. While conventional superconductors need to be cooled close to absolute zero (zero degrees on the Kelvin scale, or ? C) before they superconduct, high temperature superconductors do so above the boiling point of liquid nitrogen (? C), which makes them relatively easy to cool and cheaper to operate.

Superconductors are currently used in scientific and medical applications, such as MRI scanners, and in the future could be used to protect the national grid and increase energy efficiency, due to the amount of electrical current they can carry without losing energy.

The current carried by a superconductor also generates a magnetic field, and the more field strength that can be contained within the superconductor, the more current it can carry. State of the art, practical superconductors can carry currents that are typically 100 times greater than copper, which gives them considerable performance advantages over conventional conductors and permanent magnets.

The new record was achieved using 25 mm diameter samples of GdBCO high temperature superconductor fabricated in the form of a large, single grain using an established melt processing method and reinforced using a relatively simple technique.

The previous record of 17.2 Tesla, set in 2003 by a team led by Professor Masato Murakami from the Shibaura Institute of Technology in Japan, used a highly specialised type of superconductor of a similar, but subtly different, composition and structure.

"The fact that this record has stood for so long shows just how demanding this field really is," said Professor David Cardwell of Cambridge's Department of Engineering, who led the research, in collaboration with Boeing and the National High Field Magnet Laboratory at the Florida State University.

"There are real potential gains to be had with even small increases in field."

To contain such a large field, the team used materials known as cuprates: thin sheets of copper and oxygen separated by more complex types of atoms. The cuprates were the earliest high temperature superconductors to be discovered, and have the potential to be used widely in scientific and medical applications.

While they are high quality superconductors with outstanding potential for practical applications, the cuprates can be as brittle as dried pasta when fabricated in the form of sintered ceramics, so trying to contain a strong magnetic field within bulk forms of the cuprates tends to cause them to explode.

In order to hold in, or trap, the magnetic field, the researchers had to modify both the microstructure of GdBCO to increase its current carrying and thermal performance, and reinforce it with a stainless steel ring, which was used to 'shrink-wrap' the single grain samples. "This was an important step in achieving this result," said Dr John Durrell who led the experiment in Florida.

The lines of magnetic flux in a superconductor repel each other strongly, making containing such a large field difficult. But, by engineering the bulk microstructure, the field is retained in the sample by so-called 'flux pinning centres' distributed throughout the material.

"The development of effective pinning sites in GdBCO has been key to this success," said Dr Yun-Hua Shi, who has been responsible for developing the melt process fabrication technique at Cambridge for the past 20 years.

The result was the biggest ever trapped field achieved in a bulk, standalone material at any temperature.

"This work could herald the arrival of superconductors in real-world applications," said Professor Cardwell. "In order to see bulk superconductors applied for everyday use, we need large grains of superconducting material with the required properties that can be manufactured by relatively standard processes."

A number of niche applications are currently being developed by the Cambridge team and its collaborators, and it is anticipated that widespread commercial applications for superconductors could be seen within the next five years.

"This record could not have been achieved without the support of our academic and industrial colleagues and partners," said Professor Cardwell, who is the next Head of the Department of Engineering. "It was a real team effort, and one which we hope will bring these materials a significant step closer to practical applications."

"Boeing continues to see practical applications for this superconducting material research and we are excited about the possibilities being enabled by the recent advances achieved by the Cambridge team," said Patrick Stokes, who leads the Boeing-funded research portfolio with Cambridge University.

.


Related Links
University of Cambridge
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
New Look At Skyrmions Holds Promise For Spintronics
Berkeley CA (SPX) Jun 30, 2014
Skyrmions, subatomic quasiparticles that could play a key role in future spintronic technologies, have been observed for the first time using x-rays. An international collaboration of researchers working at Berkeley Lab's Advanced Light Source (ALS) observed skyrmions in copper selenite (Cu2SeO3) an insulator with multiferroic properties. The results not only hold promise for ultracompact ... read more


ENERGY TECH
Green planning needed to maintain city buildings

GE taps China CEO to lead Alstom merger

Net energy analysis should become a standard policy tool

Malware aims at US, Europe energy sector: researchers

ENERGY TECH
New Look At Skyrmions Holds Promise For Spintronics

Scandlines hybrid electric ferries largest hybrid ferry fleet in the world

Light-emitting diode treatments outperform traditional lighting methods

USC scientists create new battery that's cheap, clean, rechargeable...and organic

ENERGY TECH
VentAir Introduces Groundbreaking Wind Energy Innovation

Sixteen companies cleared for August wind energy auction in Maryland

OX2 acquires Polish wind power company, Greenfield Wind

Great progress on wind installations, Germany's RWE says

ENERGY TECH
IKEA Completes Near-Doubling of Maryland's Largest Rooftop Array

Solar Power Network Partners with Beisia to Develop 29 MW of Solar Power

Tofu ingredient could revolutionise solar panel manufacture

Scientists discover how plastic solar panels work

ENERGY TECH
Japan city launches legal bid to halt reactor build

Westinghouse Extends New-plant Market with Specialized Seismic Option

Single Optical Fiber Combines 100s Of Sensors To Monitor Harsh Environments

Improved method for isotope enrichment would better secure supplies

ENERGY TECH
A Win-Win-Win Solution for Biofuel, Climate, and Biodiversity

Water-cleanup catalysts tackle biomass upgrading

In Austria, heat is 'recycled' from the sewer

Genome could unlock eucalyptus potential for paper, fuel and fiber

ENERGY TECH
Are China's Astronauts Moonbound

Chinese scientists prepare for lunar base life support system

China plans to land rover on Mars by 2020

Chinese lunar rover alive but weak

ENERGY TECH
Kudzu can release soil carbon, accelerate global warming

Putting a price tag on the 2 degree climate target

More carbohydrates make trees more resistant to drought

Capturing CO2 emissions needed to meet climate targets




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.