Energy News
SOLAR DAILY
Bifacial perovskite solar cells point to higher efficiency
NREL researchers designed a bifacial perovskite solar cell. Photo from NREL
Bifacial perovskite solar cells point to higher efficiency
by Staff Writers
Golden CO (SPX) Jul 19, 2023

A bifacial perovskite solar cell, which allows sunlight to reach both sides of the device, holds the potential to produce higher energy yields at lower overall costs, according to scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). The dual nature of a bifacial solar cell enables the capture of direct sunlight on the front and the capture of reflected sunlight on the back, allowing this type of device to outperform its monofacial counterparts.

"This perovskite cell can operate very effectively from either side," said Kai Zhu, a senior scientist in the Chemistry and Nanoscience Center at NREL and lead author of a new paper published in the journal Joule: "Highly efficient bifacial single-junction perovskite solar cells." His co-authors from NREL are Qi Jiang, Rosemary Bramante, Paul Ndione, Robert Tirawat, and Joseph Berry. Other co-authors are from the University of Toledo.

Past bifacial perovskite solar cell research has yielded devices considered inadequate in comparison to monofacial cells, which have a current record of 26% efficiency. Ideally, the NREL researchers noted, a bifacial cell should have a front-side efficiency close to the best-performing monofacial cell and a similar back-side efficiency.

The researchers were able to make a solar cell where the efficiency under illumination from both sides are close together. The lab-measured efficiency of the front illumination reached above 23%. From the back illumination, the efficiency was about 91%-93% of the front.

Before constructing the cell, researchers relied on optical and electrical simulations to determine the necessary thickness. The perovskite layer on the front of the cell had to be sufficiently thick to absorb most of the photons from a certain part of the solar spectrum, but a perovskite layer that is too thick can block the photons. On the back of the cell, the NREL team had to determine the ideal thickness of the rear electrode to minimize resistive loss.

According to Zhu, simulations guided the design of the bifacial cell, and without that assistance the researchers would have had to experimentally produce cell after cell to determine the ideal thickness. They found the ideal thickness for a perovskite layer is around 850 nanometers. By comparison, a human hair is approximately 70,000 nanometers.

To evaluate the efficiency gained through bifacial illumination, the researchers placed the cell between two solar simulators. Direct light was aimed at the front side, while the back side received reflected light. The efficiency of the cell climbed as the ratio of reflected light to the front illumination increased.

While researchers estimate that a bifacial perovskite solar module would cost more to manufacture than a monofacial module, over time bifacial modules could end up being better financial investments because they generate 10%-20% more power.

The U.S. Department of Energy Solar Energy Technologies Office funded the research.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by the Alliance for Sustainable Energy LLC.

Research Report:Highly efficient bifacial single-junction perovskite solar cells

Related Links
National Renewable Energy Laboratory
All About Solar Energy at SolarDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR DAILY
Revolutionary recovery technique for space solar cells uncovered by Australian researchers
Sydney, Australia (SPX) Jul 18, 2023
A groundbreaking finding from a group of Australian researchers unveils that proton radiation damage in low-earth orbiting perovskite solar cells can be fully restored to its original efficiency through a process of thermal vacuum annealing. This multidisciplinary study was a first in several aspects. It marked the initial use of thermal admittance spectroscopy (TAS) and deep-level transient spectroscopy (DLTS) for analyzing defects in proton-irradiated and subsequently recovered perovskite solar ... read more

SOLAR DAILY
Fears for UK 'green' policies after shock by-election result

'As long as we have AC': Phoenix heat shows gap between US rich, poor

Kerry says US not dictating climate policy to China

White House launches $20B in grants for low-income, clean-energy initiatives

SOLAR DAILY
Turning waste heat into energy

Electricity from the Sky: Harnessing raindrop energy

Stellantis, Samsung to build second battery plant in US

Tata picks Britain for massive electric car battery plant

SOLAR DAILY
Biden to visit Philly Shipyard to announce construction of offshore wind vessel

New transmission line to carry wind energy electricity from Wyoming to Nevada

Brazil faces dilemma: endangered macaw vs. wind farm

Spire to provide TrueOcean with weather forecasts for offshore wind farm development

SOLAR DAILY
Harnessing the power of the Sun for water remediation

Bifacial perovskite solar cells point to higher efficiency

Revolutionary recovery technique for space solar cells uncovered by Australian researchers

Clean energy on agenda of Japan PM's pre-COP28 talks in UAE

SOLAR DAILY
IAEA says still blocked from Zaporizhzhia nuclear plant roof

Unlocking the power of molecular crystals: a possible solution to nuclear waste

Mines found at Ukraine's Zaporizhzhia nuclear plant: UN watchdog

Uranium Energy Corp completes Restart Program at the Christensen Ranch ISR Project in Wyoming

SOLAR DAILY
Harnessing synthetic biology to make sustainable alternatives to petroleum products

University of Illinois study finds turning food waste into bioenergy can become a profitable industry

New technology will let farmers produce their own fertilizer and e-fuels

Clean, sustainable fuels made 'from thin air' and plastic waste

SOLAR DAILY
British court spares Shell in climate case

G20 energy ministers fail to agree on fossil fuels roadmap

Safe train transport

Spill of 1,200 barrels of crude blight Ecuadoran beach

SOLAR DAILY
New strategy to keep pace with our changing world

Fate of Tibetan Empire tied to ancient climate shifts

US envoy Kerry arrives in China to restart climate talks

US climate envoy Kerry holds talks in China

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.