Battery with a twist by Staff Writers Zurich, Switzerland (SPX) Oct 17, 2019
Today's electronics industry is increasingly focusing on computers or smartphones with screens that can be folded or rolled. Smart clothing items make use of wearable micro-devices or sensors to monitor bodily functions, for example. However, all these devices need an energy source, which is usually a lithium-ion battery. Unfortunately, commercial batteries are typically heavy and rigid, making it fundamentally unsuitable for applications in flexible electronics or textiles. A remedy for this problem is now being created by Markus Niederberger, Professor for Multifunctional Materials at ETH Zurich, and his team. The researchers have developed a prototype for a flexible thin-film battery that can be bent, stretched and even twisted without interrupting the supply of power. What makes this new battery special is its electrolyte - that part of the battery through which lithium-ions move when the battery is charged or discharged. This electrolyte was discovered by ETH doctoral student Xi Chen, lead author of the study that recently appeared in the scientific journal Advanced Materials.
Systematically employing bendable components The two current collectors for the anode and the cathode consist of bendable polymer composite that contains electrically conductive carbon and that also serves as the outer shell. On the interior surface of the composite, the researchers applied a thin layer of micronsized silver flakes. Due to the way the flakes overlap like roof tiles, they don't lose contact with one another when the elastomer is stretched. This guarantees the conductivity of the current collector even if it is subjected to extensive stretching. And in the event that the silver flakes do in fact lose contact with each other, the electrical current can still flow through the carbon-containing composite, albeit more weakly. With the help of a mask, the researchers then sprayed anode and cathode powder onto a precisely defined area of the silver layer. The cathode is composed of lithium manganese oxide and the anode is a vanadium oxide.
Water-based gel electrolyte Niederberger emphasises that this gel is environmentally more friendly than the commercial electrolytes: "Liquid electrolyte in today's batteries are flammable and toxic." In contrast, the gel electrolyte that his doctoral student Chen developed contains water with a high concentration of a lithium salt, which not only facilitates the flow of lithium ions between cathode and anode while the battery is charging or discharging, but also keeps the water from electrochemical decomposition. The scientists joined the various parts of their prototype together with adhesive. "If we want to market the battery commercially, we'll have to find another process that will keep it sealed tight for a longer period of time," Niederberger says.
Numerous potential applications "For instance, you could sew our battery right into the clothing," Niederberger says. What's important is, in the event of battery leakage, to ensure that the liquids that come out cause no damage. This is where the team's electrolyte offers a considerable advantage. However, Niederberger stresses that more research is necessary to optimise the flexible battery before they consider commercialising it. Above all, the team has to increase the amount of electrode material it can hold. A new doctoral student has recently begun refining the stretchable power supply. The inventor of the initial prototype, Xi Chen, returned to his homeland of China after completing his doctoral thesis to take up a new job - as a consultant for the battery industry.
Cause of harmful dendrites and whiskers in lithium batteries pinpointed Richland WA (SPX) Oct 15, 2019 Scientists have uncovered a root cause of the growth of needle-like structures--known as dendrites and whiskers--that plague lithium batteries, sometimes causing a short circuit, failure, or even a fire. The team, led by Chongmin Wang at the Department of Energy's Pacific Northwest National Laboratory, has shown that the presence of certain compounds in the electrolyte--the liquid material that makes a battery's critical chemistry possible--prompts the growth of dendrites and whiskers. The team ho ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |