Argonne materials scientists pursue a new generation of batteries by Kristen Mally Dean for ANL News Lemont IL (SPX) Oct 28, 2021
Progress in applied research at Argonne National Laboratory raises hopes that solid-state batteries will replace conventional lithium-ion batteries sooner rather than later. Recharging the batteries in electronic devices - as large as electric vehicles or as small as cell phones - has become as everyday an activity as loading the dishwasher. The lithium-ion batteries that primarily power these devices are lightweight and cost-effective to produce. However, they are by nature inflammable, which raises concerns about their safety and reliability as power and grid storage demands continue to grow. Applied research at the U.S. Department of Energy's (DOE) Argonne National Laboratory suggests that replacing lithium-ion batteries with better technology may be possible sooner than expected. Lithium-ion batteries still require a liquid or gel to allow the battery to be charged and discharged; that is why older batteries sometimes leak with age. A new, safer generation of batteries does not rely on liquids or gels. Instead, these solid-state batteries use a very thin, solid film to keep charge-generating parts (cathodes and anodes) separate and enable the battery to be charged and discharged. Chemists from across the laboratory have been making discoveries in the basic science behind solid-state batteries for years. Then scientists at Argonne's Materials Engineering Research Facility (MERF) scale up those discoveries and bring them closer to the market. "Solid-state batteries can store more energy, are safer, and take up less space," said Jessica Durham, of Argonne's Applied Materials division, who works with fellow materials scientist Albert Lipson to produce innovative solids to replace liquid materials in batteries. ?"The manufacturing processes and technologies we're developing at the MERF have specific advantages - faster processing, pressureless sintering, large-scale uniformity and higher density - over those currently used." The value of speed and uniformity to battery manufacturing is straightforward, and higher density improves how long a battery can be used. Improving the sintering process is key to unlocking all of these advantages.
Sintering may be the bridge to better batteries By improving the sintering process, Argonne's scientists can also allow for the replacement of the graphite material commonly used today with lithium metal. This replacement doubles the energy density of the battery, which means that the same size battery can store twice as much energy.
Argonne puts science to work "In order for new materials to be adopted by industry, the processes to make them must be cost competitive to what is currently being done, and the materials must possess significant advantages over material in the current market," explained Durham. ?"At the MERF, we develop cost-effective processes for making new materials by replacing expensive components, lowering energy consumption, reducing waste and improving processing conditions without sacrificing the performance of the material. Doing this research at the MERF allows Argonne scientists to de-risk technologies and provide industry with a ready to go, scaled-up process." Argonne is one of the U.S. national laboratories working to scale solid-state electrolyte materials for batteries. It does so as part of its ongoing push to scale up complex materials and chemical processes critical to U.S. competitiveness in industrial manufacturing. The 28,000-square-foot MERF has been vital in helping Argonne to advance this effort, with a proven track record of using the latest technologies to help companies make new, emerging materials for advanced applications. "Argonne is an important partner for industry because we can help them de-risk new technologies or materials," said Durham. ?"De-risking these for industry will allow them to commercialize products faster, which will save them valuable time and money. This is how Argonne researchers put science to work."
Scientists get closer to creating an efficient solid-state lithium battery Yekaterinburg, Russia (SPX) Oct 28, 2021 Scientists from the Institute of High-Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences (IHTE UB RAS) and Ural Federal University have for the first time experimentally determined the optimal thickness of the aluminum layer between the lithium anode and the solid electrolyte. The Ural scientists' research brought the prospect of a fully solid-state lithium power source closer. An article about the work was published in the journal Solid State Ionics. The results wi ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |