Anomalous sinking of spheres in apparently fixed powder beds discovered by Staff Writers Osaka, Japan (SPX) May 04, 2016
A group of researchers at Okayama University and Osaka University, Japan examined the state of the surface of apparently fixed powder beds in which air weak enough not to move the powder is injected, and observed anomalous sinking phenomena, a world first. The following anomalous sinking phenomena were found by Jun Oshitani, Associate Professor, Graduate School of Natural Science and Technology, Okayama University,Takuya Tsuji, Associate Professor, Graduate School of Engineering, Osaka University and Derek Chan, Professor, School of Mathematics and Statistics, University of Melbourne and Department of Chemistry and Biotechnology, Swinburne University of Technology, Australia. 1. Unlike the case of fixed powder beds without air injection, anomalous sinking of spheres due to local fluidization of powder beds was observed. 2. The final sunken depth of a sphere varied with the sphere density and air strength. 3. When the sphere density is close to the powder bed density, spheres with smaller densities sank deeper than ones with bigger densities. Sinking of objects in fluidization, in which powder is fluidized due to air injection, is used as a dry-type gravity separation technology for recycling of wastes; segregating waste plastics and non-ferrous metals. However, with this technology, only two kinds of objects with different densities, floating objects and sinking objects, can be separated at one time. If this unique sinking phenomenon discovered by this group is used, a dry-type gravity separation technology for separating three objects with different densities can be developed, increasing the efficiency of recycling wastes. This research was published in Physical Review Letters on Thursday, Feb. 11, 2016.
Related Links Osaka University Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |