![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Washington DC (SPX) Aug 28, 2017
Scientists have developed a type of "yarn," made from carbon nanotubes that can harvest energy from twisting or stretching motions. Such a method could be useful for developing motion sensors or harvesting energy from ocean waves, among other sources. Converting mechanical energy into electricity is an appealing means to create self-powered devices and harness energy from natural sources. However, efforts to harness energy from stretching or torsional motion have been limited to circuits with very small currents. Here, Shi Hyeong Kim and colleagues discovered that adding some extra twist to a material can go a long way. They took sheets of multiwalled carbon nanotubes and spun them into high-strength yarns. Instead of simply twisting them a bit, the researchers twisted the sheets so tightly that they formed coils. In analyzing the ability of these coils to transfer spring-like motion into energy, they found it be much more effective than material that is just twisted but not coiled. Untwisting the coiled yarn by a small amount does not result in coil loss but instead increases coil diameter, boosting its conducting ability. The researchers combined the coiled nanotubes into a cell to create an energy harvesting device, which they dubbed a twistron harvester. They tested the ability of the twistron to harvest energy from ocean waves, off the coast of South Korea; the 10-centimeter-long device achieved a voltage of 46 mV and an average output power of 1.79 mW. As well, they demonstrate how the device could act as a motion sensor, for example by being sewn into a shirt to monitor motion associated with breathing.
![]() Boston MA (SPX) Aug 21, 2017 Battery researchers agree that one of the most promising possibilities for future battery technology is the lithium-air (or lithium-oxygen) battery, which could provide three times as much power for a given weight as today's leading technology, lithium-ion batteries. But tests of various approaches to creating such batteries have produced conflicting and confusing results, as well as controversi ... read more Related Links American Association for the Advancement of Science Powering The World in the 21st Century at Energy-Daily.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |