Energy News  
ENERGY TECH
A new dimension in magnetism and superconductivity launched
by Staff Writers
Vienna, Austria (SPX) Nov 04, 2021

Abrikosov vortices in a superconductor and magnetization configurations in an (anti-)ferromagnet on a Mobius strip (artistic representation) Helmholtz-Zentrum Dresden-Rossendorf, Germany

Traditionally, the primary fideld, where curvature is playing a pivotal role, is the theory of general relativity. In recent years, however, the impact of curvilinear geometry enters various disciplines, ranging from solid-state physics over soft-matter physics to chemistry and biology, giving rise to a plethora of emerging domains, such as curvilinear cell biology, semiconductors, superfuidity, optics, plasmonics and 2D van der Waals materials. In modern magnetism, superconductivity and spintronics, extending nanostructures into the third dimension has become a major research avenue because of geometry-, curvature- and topology-induced phenomena. This approach provides a means to improve conventional and to launch novel functionalities by tailoring the curvature and 3D shape.

"In recent years, there have appeared experimental and theoretical works dealing with curvilinear and three-dimensional superconducting and (anti-)ferromagnetic nano-architectures. However, these studies originate from different scientific communities, resulting in the lack of knowledge transfer between such fundamental areas of condensed matter physics as magnetism and superconductivity", says Oleksandr Dobrovolskiy, head of the SuperSpin Lab at the University of Vienna.

"In our group, we lead projects in both these topical areas and it was the aim of our perspective article to build a "bridge" between the magnetism and superconductivity communities, drawing attention to the conceptual aspects of how extension of structures into the third dimension and curvilinear geometry can modify existing and aid launching novel functionalities upon solid-state systems".

"In magnetic materials, the geometrically-broken symmetry provides a new toolbox to tailor curvature-induced anisotropy and chiral responses", says Denys Makarov, head of the department "Intelligent Materials and Systems" at the Helmholtz-Zentrum Dresden-Rossendorf. "The possibility to tune magnetic responses by designing the geometry of a wire or magnetic thin fillm, is one of the main advantages of the curvilinear magnetism, which has a major impact on physics, material science and technology. At present, under its umbrella, the fundamental field of curvilinear magnetism includes curvilinear ferro- and antiferromagnetism, curvilinear magnonics and curvilinear spintronics."

"The key difference in the impact of the curvilinear geometry on superconductors in comparison with (anti-)ferromagnets lies in the underlying nature of the order parameter," expands Oleksandr Dobrovolskiy. "Namely, in contrast to magnetic materials, for which energy functionals contain spatial derivatives of vector fields, the description of superconductors also relies on the analysis of energy functionals containing spatial derivatives of scalar fifelds.

While in magnetism the order parameter is the magnetization (vector), for a superconducting state the absolute value of the order parameter has a physical meaning of the superconducting energy gap (scalar). In the future, extension of hybrid (anti-)ferromagnet/superconductor structures into the third dimension will enable investigations of the interplay between curvature effects in systems possessing vector and scalar order parameters. Yet, this progress strongly relies on the development of experimental and theoretical methods and the improvement of computation capabilities."

Challenges for investigations of curvilinear and 3D nanomagnets and superconductors
Generally, effects of curvature and torsion are expected when the sizes or features of the system become comparable with the respective length scales. Among the various nanofabrication techniques, writing of complex-shaped 3D nano-architectures by focused particles beams has exhibited the most significant progress in the recent years, turning these methods into the techniques of choice for basic and applications-oriented studies in 3D nanomagnetism and superconductivity.

However, approaching the relevant length scales in the low nm range (exchange length in ferromagnets and superconducting coherence length in nanoprinted superconductors) is still beyond the reach of current experimental capabilities. At the same time, sophisticated techniques for the characterization of magnetic configurations and their dynamics in complex-shaped nanostructures are becoming available, including X-ray vector nanotomography and 3D imaging by soft X-ray laminography. Similar studies of superconductors are more delicate as they require cryogenic conditions, appealing for the development of such techniques in the years to come.

Research Report: "New Dimension in Magnetism and Superconductivity: 3D and Curvilinear Nanoarchitectures"


Related Links
University Of Vienna
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Making the strange metal state in high temperature superconductors even stranger
Gothenburg, Sweden (SPX) Oct 28, 2021
Researchers from Chalmers University of Technology, Sweden, have uncovered a striking new behavior of the 'strange metal' state of high temperature superconductors. The discovery represents an important piece of the puzzle for understanding these materials, and the findings have been published in the highly prestigious journal Science. Superconductivity, where an electric current is transported without any losses, holds enormous potential for green technologies. For example, if it could be made to ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
New energy systems could cause a sea change in energy efficiency during shipping

Tidal power can generate 11% of UK's electricity demand

Using building science to achieve 100% renewable energy

UK accused of 'staggering hypocrisy' as political row stalks COP26

ENERGY TECH
A new dimension in magnetism and superconductivity launched

New Curtin study solves energy storage and supply puzzle

NREL researchers point toward energy efficiency instead of long-term storage

To convert heat into electricity: Scientists developed an efficient generator

ENERGY TECH
Scientists bring efficiency to expanding offshore wind energy

From oil to renewables, winds of change blow on Scottish islands

US unveils plans for seven major offshore wind farms

Large wind farms cause different effects for local and regional climates

ENERGY TECH
Creating solar cells and glass from wood - or a billion tons of biowaste

Using nanowires to make ultra efficient low-cost solar cells

Photovoltaic solar heating system uses 95% of energy available to heat water

Novel plasmonic solar thermal materials developed to reserve sun heat

ENERGY TECH
Climate crisis could give nuclear energy a second wind

Low public support for nuclear energy development in Southeast Asia

Framatome to provide cybersecurity services for a nuclear facility safety technology project

Steam leak detected at Russian nuclear plant

ENERGY TECH
Making aircraft fuel from sunlight and air

Turning plastic grocery bags into sustainable fuel

Using microbes to make carbon-neutral fuel

Oil-rich UAE to burn waste to make power

ENERGY TECH
Despite oil wealth, poverty fuels despair in south Iraq

19 countries vow to end overseas fossil fuel finance

Climate 'reality check': 2021 global CO2 emissions near record levels

US, Iran dispute facts of tanker incident in Sea of Oman

ENERGY TECH
Glasgow braces for climate protests on global day of action

Moscow, Beijing reject Biden criticism on climate

Green groups decry COP26 'shambles' as observers locked out

Earth's orbit affects millennial climate variability









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.