. | . |
|
. |
by Staff Writers Washington DC (SPX) Aug 26, 2011
The main challenge presented in many of these models is the precise prediction of the pressure profile in addition to liquid/gas volumes and flow rates at various points along the oil well. "This issue becomes even more critical as many drilling operations today involve long and deep wells with corresponding high pressures and high temperatures," Evje explains. Regions along the well that are open to crevices and deformities in the rock formations present specific challenges, as it is critical to maintain well pressure at these positions within certain limits. Thus, in the case of inflow of gas from surrounding rock formations, it would be important to safely transport this gas out of the well. The starting point for Evje's proposed mathematical model is a one-dimensional two-phase model, which is often used to simulate unsteady, compressible liquid and gas flow in pipes and wells. Unlike previously analyzed models, in this gas-liquid model, the two phases may have unequal fluid velocity and a generalized term to jointly represent liquid and gas pressure. This allows a model that can describe the ascent of a gas slug (conglomerate of high pressure gas bubbles) due to buoyancy forces in a vertical well. A gas-kick situation is usually accompanied by such a flow scenario. In order to compute reliable solutions, it is crucial to have a model that is well defined mathematically. Mathematical methods are applied in order to derive upper and lower limits for various quantities like masses and fluid velocities, which provide insight into the parameters that are important for the control of these quantities. In addition, they allow proof of the existence of solutions for the model in a strict mathematical sense. In this paper, the author demonstrates that under certain assumptions, a solution exists. Conditions are assumed to be isothermal, and relevant physical mechanisms are factored into the model, such as frictional forces, hydrostatic pressure, force of gravity, and compression and decompression of gas. Such mathematical analysis is essential to optimize and evaluate drilling operations and well-control practices in order to minimize the possibility of oil well disasters, especially in deep-water wells. "The possibility of blowout occurrences needs to be mitigated in order to avoid human casualties, financial losses, and finally but not least, environmental damage," says Evje. Weak Solutions for a Gas-Liquid Model Relevant for Describing Gas-Kick in Oil Wells. Steinar Evje, SIAM Journal on Mathematical Analysis 43 (2011), pp 1887-1922 (Online publish date: August 11, 2011)
|
. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |