Energy News  
ENERGY TECH
A leap in using silicon for battery anodes
by Staff Writers
Richland WA (SPX) Apr 29, 2020

Silicon microspheres have extraordinary mechanical strength due to the addition of carbon nanotubes which make the spheres resemble balls of yarn. In this representation, the image on the left illustrates a close-up of a portion of a microsphere made of silicon nano particles deposited on carbon nanotubes.

The same material you'll find at the tip of a pencil - graphite - has long been a key component in today's lithium-ion batteries. As our reliance on these batteries increases, however, graphite-based electrodes are due for an upgrade. For that, scientists are looking to the element at the heart of the digital revolution: silicon.

Scientists at the U.S. Department of Energy's Pacific Northwest National Laboratory have come up with a novel way to use this promising but problematic energy storage ingredient. Silicon, used in computer chips and many other products, is appealing because it can hold 10 times the electrical charge per gram compared to graphite. The trouble is, silicon expands greatly when it encounters lithium, and it is too weak to withstand the pressure of electrode manufacturing.

To tackle these issues, a team led by PNNL researchers Ji-Guang (Jason) Zhang and Xiaolin Li developed a unique nanostructure that limits silicon's expansion while fortifying it with carbon.

Their work, which was recently published in the journal Nature Communications, could inform new electrode material designs for other types of batteries and eventually help increase the energy capacity of the lithium-ion batteries in electric cars, electronic devices, and other equipment.

Taking the cons out of silicon
A conductive and stable form of carbon, graphite is well suited to packing lithium ions into a battery's anode as it charges. Silicon can take on more lithium than graphite, but it tends to balloon about 300 percent in volume, causing the anode to break apart. The researchers created a porous form of silicon by aggregating small silicon particles into microspheres about 8 micrometers in diameter - roughly the size of one red blood cell.

"A solid material like stone, for example, will break if it expands too much in volume," Zhang said. "What we created is more sponge-like, where there is space inside to absorb the expansion."

The electrode with porous silicon structure exhibits a change in thickness of less than 20 percent while accommodating twice the charge of a typical graphite anode, the study found. However, unlike previous versions of porous silicon, the microspheres also exhibited extraordinary mechanical strength, thanks to carbon nanotubes that make the spheres resemble balls of yarn.

Super-strong microspheres
The researchers created the structure in several steps, starting by coating the carbon nanotubes with silicon oxide. Next, the nanotubes were put into an emulsion of oil and water. Then they were heated to boiling.

"The coated carbon nanotubes condense into spheres when the water evaporates," said Li. "Then we used aluminum and higher heat to convert the silicon oxide into silicon, followed by immersion in water and acid to remove by-products." What emerges from the process is a powder composed of the tiny silicon particles on the surface of carbon nanotubes.

The porous silicon spheres' strength was tested using the probe of an atomic force microscope. The authors found that one of the nanosized yarn balls "may yield slightly and lose some porosity under very high compressing force, but it will not break."

This augurs well for commercialization, because anode materials must be able to handle high compression in rollers during manufacturing. The next step, Zhang said, is to develop more scalable and economical methods for making the silicon microspheres so that they can one day make their way into the next generation of high-performance lithium-ion batteries.

Research paper


Related Links
Pacific Northwest National Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Microwaves power new technology for batteries, energy
West Lafayette IN (SPX) Apr 24, 2020
New battery technology involving microwaves may provide an avenue for renewable energy conversion and storage. Purdue University researchers created a technique to turn waste polyethylene terephthalate, one of the most recyclable polymers, into components of batteries. "We use an ultrafast microwave irradiation process to turn PET, or polyethylene terephthalate, flakes into disodium terephthalate, and use that as battery anode material," said Vilas Pol, a Purdue associate professor of chemic ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Europe's banks not doing enough on climate: pressure group

DLR rethinks carbon pricing process

Brussels tries to inoculate EU Green Deal against virus

Major new study charts course to net zero industrial emissions

ENERGY TECH
Superconductivity: It's hydrogen's fault

Microwaves power new technology for batteries, energy

Diamonds shine in energy storage solution

New scavenger technology allows robots to 'eat' metal for energy

ENERGY TECH
Supercomputing future wind power rise

Wind energy expansion would have $27 billion economic impact

Opportunity blows for offshore wind in China

Alphabet cuts cord on power-generating kite business

ENERGY TECH
Windows will soon generate electricity, following solar cell breakthrough

Scientists have devised method for gentle laser processing of perovskites at nanoscale

Physicists develop approach to increase performance of solar energy

NASA Earth data powers energy-saving decisions

ENERGY TECH
Framatome awarded to modernize research reactor at Technical University of Munich

Supercomputers and Archimedes' law enable calculating nanobubble diffusion in nuclear fuel

Framatome signs long-term support contract for Taishan EPR operations

Framatome to deliver reactor protection system to Kursk Nuclear Power Plant II in Russia

ENERGY TECH
Under pressure: New bioinspired material can 'shapeshift' to external forces

Valorizing wastewater can improve commercial viability of biomass oil production

Ethanol production plummets as people drive less during pandemic

Making biofuels cheaper by putting plants to work

ENERGY TECH
Crude lifted by Iran-US tension but virus impact hits stocks

Stock markets boosted by hopes virus worst has passed, oil dives

Study: Permian Basin has highest U.S. oil, gas methane emissions ever

Crisis-hit oil market in frantic hunt for storage

ENERGY TECH
US attacks China climate record on Earth Day

Fight climate change like coronavirus: UN

2019 was Europe's hottest year ever: EU

Pandemic cuts both ways for climate change









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.