Energy News  
ENERGY TECH
3D printing the next generation of batteries
by Staff Writers
New York NY (SPX) Aug 02, 2018

Lattice architecture can provide channels for effective transportation of electrolyte inside the volume of material, while for the cube electrode, most of the material will not be exposed to the electrolyte. The cross-section view shows the silver mesh enabling the charge (Li+ ions) transportation to the current collector and how most of the printed material has been utilized.

Additive manufacturing, otherwise known as 3-D printing, can be used to manufacture porous electrodes for lithium-ion batteries - but because of the nature of the manufacturing process, the design of these 3-D printed electrodes is limited to just a few possible architectures.

Until now, the internal geometry that produced the best porous electrodes through additive manufacturing was what's known as an interdigitated geometry - metal prongs interlocked like the fingers of two clasped hands, with the lithium shuttling between the two sides.

Lithium-ion battery capacity can be vastly improved if, on the microscale, their electrodes have pores and channels. An interdigitated geometry, though it does allow lithium to transport through the battery efficiently during charging and discharging, is not optimal.

Rahul Panat, an associate professor of mechanical engineering at Carnegie Mellon University, and a team of researchers from Carnegie Mellon in collaboration with Missouri University of Science and Technology have developed a revolutionary new method of 3-D printing battery electrodes that creates a 3-D microlattice structure with controlled porosity.

3-D printing this microlattice structure, the researchers show in a paper published in the journal Additive Manufacturing, vastly improves the capacity and charge-discharge rates for lithium-ion batteries.

"In the case of lithium-ion batteries, the electrodes with porous architectures can lead to higher charge capacities," says Panat.

"This is because such architectures allow the lithium to penetrate through the electrode volume leading to very high electrode utilization, and thereby higher energy storage capacity. In normal batteries, 30-50% of the total electrode volume is unutilized.

Our method overcomes this issue by using 3D printing where we create a microlattice electrode architecture that allows the efficient transport of lithium through the entire electrode, which also increases the battery charging rates."

The additive manufacturing method presented in Panat's paper represents a major advance in printing complex geometries for 3-D battery architectures, as well as an important step toward geometrically optimizing 3-D configurations for electrochemical energy storage. The researchers estimate that this technology will be ready to translate to industrial applications in about 2-3 years.

The microlattice structure (Ag) used as lithium-ion batteries' electrodes was shown to improve battery performance in several ways such as a fourfold increase in specific capacity and a twofold increase in areal capacity when compared to a solid block (Ag) electrode.

Furthermore, the electrodes retained their complex 3D lattice structures after forty electrochemical cycles demonstrating their mechanical robustness. The batteries can thus have high capacity for the same weight or alternately, for the same capacity, a vastly reduced weight - which is an important attribute for transportation applications.

The Carnegie Mellon researchers developed their own 3-D printing method to create the porous microlattice architectures while leveraging the existing capabilities of an Aerosol Jet 3-D printing system. The Aerosol Jet system also allows the researchers to print planar sensors and other electronics on a micro-scale, which was deployed at Carnegie Mellon University's College of Engineering earlier this year.

Until now, 3-D printed battery efforts were limited to extrusion-based printing, where a wire of material is extruded from a nozzle, creating continuous structures. Interdigitated structures were possible using this method.

With the method developed in Panat's lab, the researchers are able to 3-D print the battery electrodes by rapidly assembling individual droplets one-by-one into three-dimensional structures. The resulting structures have complex geometries impossible to fabricate using typical extrusion methods.

"Because these droplets are separated from each other, we can create these new complex geometries," says Panat. "If this was a single stream of material, as is in the case of extrusion printing, we wouldn't be able to make them. This is a new thing. I don't believe anybody until now has used 3-D printing to create these kinds of complex structures."

This revolutionary method will be very important for consumer electronics, medical devices industry, as well as aerospace applications. This research will integrate well with the biomedical electronic devices, where miniaturized batteries are required.

Non-biological electronic micro-devices will also benefit from this work. And on a bigger scale, electronic devices, small drones, and aerospace applications themselves can use this technology as well, due to the low weight and high capacity of the batteries printed using this method.

Research paper


Related Links
College of Engineering, Carnegie Mellon University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Liquid microscopy technique reveals new problem with lithium-oxygen batteries
Chicago IL (SPX) Jul 27, 2018
Using an advanced, new microscopy technique that can visualize chemical reactions occurring in liquid environments, researchers have discovered a new reason lithium-oxygen batteries - which promise up to five times more energy than the lithium-ion batteries that power electric vehicles and cell phones - tend to slow down and die after just a few charge/discharge cycles. They report their findings in the journal Nano Energy. "What we were able to see for the first time is that lithium peroxide deve ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Germany thwarts China by taking stake in 50Hertz power firm

Global quadrupling of cooling appliances to 14 billion by 2050

Equinor buys short-term electricity trader

China reviewing low-carbon efforts

ENERGY TECH
New class of materials could be used to make batteries that charge faster

Liquid microscopy technique reveals new problem with lithium-oxygen batteries

Gold nanoparticles to find applications in hydrogen economy

The relationship between charge density waves and superconductivity

ENERGY TECH
Searching for wind for the future

Clock starts for Germany's next wind farm

ENGIE: Wind energy footprint firmed up in Norway

Batteries make offshore wind energy debut

ENERGY TECH
Europe may thrive on renewable energy despite unpredictable weather

New two-dimensional material could revolutionize solar fuel generation

NRL increases UAV endurance with Solar Soaring technology

WorleyParsons' Advisian wins major role on world's largest solar power project

ENERGY TECH
Framatome becomes main distributor of Chesterton valve packing and seals for the nuclear energy industry

SUSI submarine robot enables successful visual Inspection at Asco Nuclear Power Plant

EDF sees new delay, cost overruns for nuclear reactor

First Ukraine nuclear reactor loaded 'solely' with non-Russian fuel

ENERGY TECH
Team shatters theoretical limit on bio-hydrogen production

Hydrogen and plastic production offer new catalyst with a dual function

Feeding plants to this algae could fuel your car

Splitting water: Nanoscale imaging yields key insights

ENERGY TECH
Engineers use Tiki torches in study of soot, diesel filters

BP's Dudley sees short-term support for the price of oil

Low supply, high demand pushing up gas prices

Iran again vows action in the Strait of Hormuz

ENERGY TECH
Sri Lanka waives debt for 200,000 women in drought areas

Cold wave reveals potential benefits of urban heat islands

Microclimates to provide species refuge from warming temperatures

Native bison hunters amplified climate impacts on North American prairie fires









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.