Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
X-ray pulses on demand from electron storage rings
by Staff Writers
Berlin, Germany (SPX) Jun 02, 2014


Some contemporary Synchroton Radiation methods need light pulsed x-rays with a specific time structure. HZB-users at BESSY II can use them now on demand. Graphics: Highway at night. Image couresy K. Holldack and HZB.

Everything we know nowadays about novel materials and the underlying processes in them we also know thanks to studies at contemporary synchrotron facilities like BESSY II. Here, relativistic electrons in a storage ring are employed to generate very brilliant and partly coherent light pulses from the THz to the X-ray regime in undulators and other devices.

However, most of the techniques used at synchrotrons are very "photon hungry" and demand brighter and brighter light pulses to conduct innovative experiments. The general greed for stronger light pulses does, however, not really meet the requirements of one of the most important techniques in material science: photoelectron spectroscopy. Physicists and chemists have been using it for decades to study molecules, gases and surfaces of solids.

However, if too many photons hit a surface at the same time, space charge effects deteriorate the results. Owing to these limits, certain material parameters stay hidden in such cases. Thus, a tailored temporal pattern of x-ray pulses is mandatory to move things forward in surface physics at Synchrotrons.

Scientists from HZB's Institute for Methods and Instrumentation in Synchrotron Radiation Research and the Accelerator Department have now jointly solved the gordic knot as they published in the renowned journal Nature Communications.

Their novel method is capable of picking single pulses out of a conventional pulse train as usually emitted from Synchrotron facilities. They managed to apply this for the first time to time-of-flight electron spectroscopy based on modern instruments as developed within a joint Lab with Uppsala University, Sweden.

Picking single pulses out of a pulse train
The pulse picking technique is based on a quasi resonant magnetic excitation of transverse oscillations in one specific relativistic electron bunch that - like all others - generates a radiation cone within an undulator. The selective excitation leads to an enlargement of the radiation cone.

Employing a detour ("bump") in the electron beam path, the regular radiation and the radiation from the excited electrons can be easily separated and only pulses from the latter arrive - once per revolution - at the experiment. Thus, the arrival time of the pulses is now perfectly accommodated for modern high resolution time-of-flight spectrometers.

Users will be able to examine band structures with higher precision
"The development of the Pulse Picking by Resonant Excitation (PPRE) was science driven by our user community working with single bunch techniques. They demand more beamtime to improve studies on e.g. graphene, topological insulators and other "hot topics" in material science like the current debates about high Tc-Superconductors, magnetic ordering phenomena and catalytic surface effects for energy storage.

Moreover, with pulse picking techniques at hand, we are now well prepared for our future light source with variable pulse lengths: BESSY-VSR, where users will appreciate pulse selection on demand to readily switch from high brightness to ultrashort pulses according to their individual needs" says Karsten Holldack, corresponding author of the paper.

First tests successful
The researchers have proven the workability of their method with ARTOF-time-of-flight spectrometers at different undulators and beamlines as well as in BESSY II's regular user mode. "Here we could certainly benefit from long year experiences with emittance manipulation", says Dr. P. Kuske acting as head of the accelerator part of the team.

Thanks to accelerator developments in the past, we are capable of even picking ultrashort pulses out of the bunch trains in low-alpha operation, a special operation mode of BESSY II. At last, the users can, already right now, individually switch - within minutes - between high static flux and the single pulse without touching any settings at their instruments and the sample.

The work has now been published on May 30th 2014 in Nature Communications: Single Bunch X-ray Pulses on Demand from a Multibunch Synchrotron Radiation Source, K. Holldack et al. DOI 10.1038/ncomms5010

.


Related Links
Helmholtz-Zentrum Berlin fur Materialien und Energie
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Scientists develop new hybrid energy transfer system
Southampton, UK (SPX) May 28, 2014
Scientists from the University of Southampton, in collaboration with the Universities of Sheffield and Crete, have developed a new hybrid energy transfer system, which mimics the processes responsible for photosynthesis. From photosynthesis to respiration, the processes of light absorption and its transfer into energy represent elementary and essential reactions that occur in any biological livi ... read more


ENERGY TECH
Global warming: Breakthrough material absorbs CO2 from gas

Renewable Energy Target Not The Power Price Villain

Obama plans power plant rules in bold climate push

Ukraine: The Real Energy Crisis Starts in June

ENERGY TECH
Breakthrough in energy storage: Electrical cables that can store energy

X-ray pulses on demand from electron storage rings

Physicist builds useful light source from harmonic generation

Obama wants to force coal plants to reduce emissions: NYTimes

ENERGY TECH
New York coast could be site of new wind farms, U.S. government says

A new concept to improve power production performance of wind turbines in a wind farm

Scottish energy sector gets a bit greener with RWE Innogy project

German energy company RWE Innogy starts turbine installation at mega wind project

ENERGY TECH
UK dominates Europe large scale PV activity in 2014

Rare chemical phenomenon used to harvest solar energy

Intersolar Europe Conference 2014 Gets Underway

Solar panel manufacturing is greener in Europe than China

ENERGY TECH
Nuclear waste dump on Aboriginal land invalid, court told

Highly radioactive substance found in Swiss dump: report

French police raid Areva over UraMin purchase

Japan to replace anti-nuclear voices on industry watchdog

ENERGY TECH
Researchers create microbes for direct conversion of biomass to fuel

Microalgae Capable Of Assimilating The Ammonium From Agri-Food Waste

Green and yellow - straw from oilseed as a new source of biofuels

EU study assesses turning CO2 into methanol for use in transport

ENERGY TECH
Chinese lunar rover alive but weak

China's Jade Rabbit moon rover 'alive but struggling'

Chinese space team survives on worm diet for 105 days

Moon rover Yutu comes closer to public

ENERGY TECH
EU steps up call for pre-2020 action at climate talks

Study links urbanization and future heat-related mortality

EU greenhouse emissions fall more than expected: new data

Decomposing logs show local factors undervalued in climate predictions




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.