Energy News  
ENERGY TECH
Using River Water And Salty Ocean Water To Generate Electricity

File image.
by Staff Writers
Stanford CA (SPX) Apr 05, 2011
Stanford researchers have developed a battery that takes advantage of the difference in salinity between freshwater and seawater to produce electricity.

Anywhere freshwater enters the sea, such as river mouths or estuaries, could be potential sites for a power plant using such a battery, said Yi Cui, associate professor of materials science and engineering, who led the research team.

The theoretical limiting factor, he said, is the amount of freshwater available. "We actually have an infinite amount of ocean water; unfortunately we don't have an infinite amount of freshwater," he said.

As an indicator of the battery's potential for producing power, Cui's team calculated that if all the world's rivers were put to use, their batteries could supply about 2 terawatts of electricity annually - that's roughly 13 percent of the world's current energy consumption.

The battery itself is simple, consisting of two electrodes - one positive, one negative - immersed in a liquid containing electrically charged particles, or ions. In water, the ions are sodium and chlorine, the components of ordinary table salt.

Initially, the battery is filled with freshwater and a small electric current is applied to charge it up. The freshwater is then drained and replaced with seawater. Because seawater is salty, containing 60 to 100 times more ions than freshwater, it increases the electrical potential, or voltage, between the two electrodes. That makes it possible to reap far more electricity than the amount used to charge the battery.

"The voltage really depends on the concentration of the sodium and chlorine ions you have," Cui said. "If you charge at low voltage in freshwater, then discharge at high voltage in sea water, that means you gain energy. You get more energy than you put in."

Once the discharge is complete, the seawater is drained and replaced with freshwater and the cycle can begin again. "The key thing here is that you need to exchange the electrolyte, the liquid in the battery," Cui said. He is lead author of a study published in the journal Nano Letters earlier this month.

In their lab experiments, Cui's team used seawater they collected from the Pacific Ocean off the California coast and freshwater from Donner Lake, high in the Sierra Nevada. They achieved 74 percent efficiency in converting the potential energy in the battery to electrical current, but Cui thinks with simple modifications, the battery could be 85 percent efficient.

To enhance efficiency, the positive electrode of the battery is made from nanorods of manganese dioxide. That increases the surface area available for interaction with the sodium ions by roughly 100 times compared with other materials. The nanorods make it possible for the sodium ions to move in and out of the electrode with ease, speeding up the process.

Other researchers have used the salinity contrast between freshwater and seawater to produce electricity, but those processes typically require ions to move through a membrane to generate current. Cui said those membranes tend to be fragile, which is a drawback. Those methods also typically make use of only one type of ion, while his battery uses both the sodium and chlorine ions to generate power.

Cui's team had the potential environmental impact of their battery in mind when they designed it. They chose manganese dioxide for the positive electrode in part because it is environmentally benign.

The group knows that river mouths and estuaries, while logical sites for their power plants, are environmentally sensitive areas.

"You would want to pick a site some distance away, miles away, from any critical habitat," Cui said. "We don't need to disturb the whole system, we just need to route some of the river water through our system before it reaches the ocean. We are just borrowing and returning it," he said.

The process itself should have little environmental impact. The discharge water would be a mixture of fresh and seawater, released into an area where the two waters are already mixing, at the natural temperature.

One of Cui's concerns is finding a good material for the negative electrode. He used silver for the experiments, but silver is too expensive to be practical.

His group did an estimate for various regions and countries and determined that South America, with the Amazon River draining a large part of the continent, has the most potential. Africa also has an abundance of rivers, as do Canada, the United States and India.

But river water doesn't necessarily have to be the source of the freshwater, Cui said.

"The water for this method does not have to be extremely clean," he said. Storm runoff and gray water could potentially be useable.

A power plant operating with 50 cubic meters of freshwater per second could produce up to 100 megawatts of power, according to the team's calculations. That would be enough to provide electricity for about 100,000 households.

Cui said it is possible that even treated sewage water might work.

"I think we need to study using sewage water," he said. "If we can use sewage water, this will sell really well."



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Stanford University
Powering The World in the 21st Century at Energy-Daily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


ENERGY TECH
First Practical Nanogenerator Produces Electricity With Pinch Of The Fingers
Anaheim CA (SPX) Apr 05, 2011
After six years of intensive effort, scientists are reporting development of the first commercially viable nanogenerator, a flexible chip that can use body movements - a finger pinch now en route to a pulse beat in the future - to generate electricity. Speaking at the 241st National Meeting and Exposition of the American Chemical Society, they described boosting the device's power output b ... read more







ENERGY TECH
Developing Commercial Hydrokinetic Energy Projects

New Zealand to slash emissions by half

US energy future hazy on Japan, environment fears

Report: China leads in low-carbon energy

ENERGY TECH
Giant Batteries For Green Power

Cuba to drill five new oil wells by 2013

Using River Water And Salty Ocean Water To Generate Electricity

First Practical Nanogenerator Produces Electricity With Pinch Of The Fingers

ENERGY TECH
Manitoba wind farm comes online

Alstom Announces Commercial Operation Of First North American Wind Farms

Vestas unveils new offshore turbine

US hopes to resolve China wind turbine rift

ENERGY TECH
UNI-SOLAR Powers Largest Solar Power Plant In French Riviera

Unirac Partners With Wise Power Systems On Breakthrough Solar Installation

First Polymer Solar-Thermal Device Heats Home, Saves Money

City to build solar carports with chargers

ENERGY TECH
Bulgaria, Russia halt work on nuclear power plant

Nuclear Power Investment Must Not Be Delayed

Addressing The Nuclear Waste Issue

US nuke reprocessing would benefit French firm: study

ENERGY TECH
Advance Toward Making Biodegradable Plastics From Waste Chicken Features

Short Rotation Energy Crops Could Help Meet UK's Renewable Energy Targets

Boeing Issues First Latin American Study On Jatropha Sustainability

Key Plant Traits Yield More Sugar For Biofuels

ENERGY TECH
What Future for Chang'e-2

China setting up new rocket production base

China's Tiangong-1 To Be Launched By Modified Long March II-F Rocket

China Expects To Launch Fifth Lunar Probe Chang'e-5 In 2017

ENERGY TECH
UN talks aim to thrash out tough details on climate

Japan nuclear crisis to affect climate battle: EU

Communicating Uncertain Climate Risks

Study: Ancient peoples had climate impact


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement