Energy News  
ENERGY TECH
Updated computer code improves prediction of particle motion in plasma experiments
by Staff Writers
Plainsboro NJ (SPX) Aug 16, 2017


PPPL physicist Mario Podesta. Image courtesy Elle Starkman

A computer code used by physicists around the world to analyze and predict tokamak experiments can now approximate the behavior of highly energetic atomic nuclei, or ions, in fusion plasmas more accurately than ever. The new capability, developed by physicist Mario Podesta at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), outfits the code known as TRANSP with a subprogram that simulates the motion that leads to the loss of energetic ions caused by instabilities in the plasma that fuels fusion reactions. The code, whose name is derived from the term "transport," is housed at PPPL.

Podesta modeled the highly energetic ions that are used to heat the plasma. These particles, which physicists inject as neutral atoms, are ionized inside the plasma and increase its thermal energy. The model could also apply to fusion-generated energetic particles in future tokamaks.

Physicists need to predict and minimize the loss of these ions from the plasma in doughnut-shaped facilities called tokamaks to achieve a high level of performance. Sudden loss can halt fusion reactions and damage plasma-facing components. Predicting and controlling heat loss will be crucial for ITER, the international tokamak under construction in France, in which temperatures are to reach 150 million degrees Celsius, or 10 times the heat at the core of the sun.

Podesta's results build on research he conducted in 2015. "The original work with my model focused on reproducing, modeling, and interpreting results from existing experiments," he said. "This new work explores the possibility of using that same model to predict energetic particle transport in future experiments."

The revision, reported in July in the journal Plasma Physics and Controlled Fusion, employs a subprogram called a "kick model" to simulate the movement of fast ions caused by instabilities in the plasma. The kick model captures only the minimum amount of physics necessary to simulate this specific phenomenon.

The subprogram enables the completion of calculations in a matter of hours, rather than weeks or months. Using the kick model means sacrificing some accuracy, but it allows researchers to get results more quickly. "That's the trade-off," Podesta said. Support for this research comes from the DOE's Office of Science (Fusion Energy Sciences).

Podesta tested his modified version by comparing it with data produced by PPPL's National Spherical Torus Experiment (NSTX) prior to its upgrade. The modified code predicted levels of energetic particle transport that agreed with the NSTX experiments.

The new approach suggests that with further modifications, such forecasts can be made more reliable with just a limited increase in computing time. "The question before this research was whether we can predict what will happen in future experiments, with a minimum amount of prior information," Podesta said. "It now appears that we can, and these favorable results motivate further improvements to the model."

Research paper

ENERGY TECH
First basic physics simulation of impact of neutrals on turbulence
Plainsboro NJ (SPX) Jul 25, 2017
Turbulence, the violently unruly disturbance of plasma, can prevent plasma from growing hot enough to fuel fusion reactions. Long a puzzling concern of researchers has been the impact on turbulence of atoms recycled from the walls of tokamaks that confine the plasma. These atoms are neutral, meaning that they have no charge and are thus unaffected by the tokamak's magnetic field or plasma ... read more

Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
India must rethink infrastructure needs for 100 new 'smart' cities to be sustainable

Allowable 'carbon budget' most likely overestimated

Sparkling springs aid quest for underground heat energy sources

Google's 'moonshot' factory spins off geothermal unit

ENERGY TECH
Saliva-powered battery could be helpful in extreme conditions

Rice develops dual-surface graphene electrode to split water into hydrogen and oxygen

How the electrodes of lithium-air batteries become passivated

Study reveals exactly how low-cost fuel cell catalysts work

ENERGY TECH
Norway's Statoil reshapes hold of giant wind farm off the British coast

Annual wind report confirms tech advancements, improved performance, low wind prices

Vertical axis wind turbines can offer cheaper electricity for urban and suburban areas

U.S. wind power momentum up 40 percent from last year

ENERGY TECH
ABB wins $30 million order to support integration of renewables in Germany

Solar glasses generate solar power

New method enhances broadband light absorption in solar cells

Lightweight catalyst for artificial photosynthesis

ENERGY TECH
RWE optimistic for 2017, boosted by nuclear tax refund

The Roadmap for Increased Safety and Viability of Nuclear Power Plants

Areva signs MOX fuel fabrication contract with Japan

Construction of two nuclear power plants in US halted

ENERGY TECH
Additive selectively converts CO2 to multicarbon fuels

New light-activated catalyst grabs CO2 to make ingredients for fuel

Biochar could clear the air in more ways than one

Algae cultivation technique could advance biofuels

ENERGY TECH
Oil prices edge lower on OPEC output

BP starts new gas production from Trinidad, a major exporter

Saudi Arabia reports higher oil revenue

Oklahoma shale production could increase

ENERGY TECH
UNEP chief urges China to do more on climate

Can poor air quality mask global warming's effects

US to join climate talks despite Paris accord exit

Government report sees drastic climate change impact in US: NYT









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.