Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
UT Arlington physics team demonstrates new power generation technique
by Staff Writers
Arlington VA (SPX) Nov 14, 2012


Wei Chen.

A University of Texas at Arlington physics professor has helped create a hybrid nanomaterial that can be used to convert light and thermal energy into electrical current, surpassing earlier methods that used either light or thermal energy, but not both. Working with Louisiana Tech University assistant professor Long Que, UT Arlington associate physics professor Wei Chen and graduate students Santana Bala Lakshmanan and Chang Yang synthesized a combination of copper sulfide nanoparticles and single-walled carbon nanotubes.

The team used the nanomaterial to build a prototype thermoelectric generator that they hope can eventually produce milliwatts of power.

Paired with microchips, the technology could be used in devices such as self-powering sensors, low-power electronic devices and implantable biomedical micro-devices, Chen said.

"If we can convert both light and heat to electricity, the potential is huge for energy production," Chen said. "By increasing the number of the micro-devices on a chip, this technology might offer a new and efficient platform to complement or even replace current solar cell technology."

In lab tests, the new thin-film structure showed increases by as much at 80 percent in light absorption when compared to single-walled nanotube thin-film devices alone, making it a more efficient generator.

Copper sulfide is also less expensive and more environment-friendly than the noble metals used in similar hybrids.

In October, the journal Nanotechnology published a paper on the work called "Optical thermal response of single-walled carbon nanotube-copper sulfide nanoparticle hybrid nanomaterials."

In it, researchers also say also found that they could enhance the thermal and optical switching effects of the hybrid nanomaterial as much as ten times by using asymmetric illumination, rather than symmetric illumination.

Coauthors on the Nanotechnology paper from Louisiana Tech include Yi-Hsuan Tseng, Yuan He and Que, all of the school's Institute for Micromanufacturing.

"Dr. Chen's research with nanomaterials is an important advancement with the potential for far-reaching applications," said Pamela Jansma, dean of the UT Arlington College of Science. "This is the kind of work that demonstrates the value of a research university in North Texas and beyond."

Chen is currently receiving funding from the U.S. Department of Defense to develop nanoparticle self-lighting photodynamic therapy for use against breast and prostate cancers.

In 2010, he was the first to publish results in the journal Nanomedicine demonstrating that near infrared light could be used to heat copper sulfide nanoparticles for photothermal therapy in cancer treatment, which destroys cancer cells with heat between 41 and 45 degrees Celsius.

Next month, the Journal of Biomedical Nanotechnology will publish Chen's work successfully coupling gold nanoparticles with the copper sulfide nanoparticles for the photothermal therapy.

Such a material would be less costly and potentially more effective than using gold particles alone, Chen said. The new paper is called "Local field enhanced Au/CuS nanocomposites as efficient photothermal transducer agents for cancer treatment."

Chen is also leading a UT Arlington team exploring ways to develop various nanoparticles for radiation detection. That work is funded by a $1.3 million grant from the National Science Foundation and the U.S. Department of Homeland Security.

.


Related Links
University of Texas at Arlington
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Symposium Celebrates 25th Anniversary of Superconductivity Breakthrough at UH
Houston TX (SPX) Nov 13, 2012
It was a groundbreaking discovery 25 years ago that remains relevant today - University of Houston physics professor Paul Chu achieved superconductivity at a temperature that would usher in a new era in materials science. To celebrate this historic achievement, the Texas Center for Superconductivity at UH (TcSUH) is hosting a special 25th Anniversary Symposium on Creativity and Innovation on Mon ... read more


ENERGY TECH
White Pavements Could Increase Energy Consumption in Surrounding Buildings

EU grid interconnection program targeted

New Rule Could Reenergize Clean-Energy In New Jersey

Enviro Champions Win on Clean Energy, Protecting Environment and Public Health

ENERGY TECH
Chevron's Gorgon project to cost more?

UT Arlington physics team demonstrates new power generation technique

Prestige skipper blames Spain at oil disaster trial

Warning issued on 'experimental' fracking

ENERGY TECH
Gannets could be affected by offshore energy developments

Scotland approves 85MW Highlands wind farm

China backs suit against Obama over wind farm deal

DNV KEMA awarded framework agreement for German wind project developer SoWiTec

ENERGY TECH
Australia scraps Solar Dawn project

Bosch quits international solar energy project

EU probes subsidies for Chinese solar panel makers

Stadiums increase renewable energy use

ENERGY TECH
French EDF, Areva mull nuclear plan with China's CGNPC

S. Korea reactor shut down due to cracks

Fault under Japan nuclear plant 'may be active'

S. Korea watchdog finds cracks in nuclear reactor

ENERGY TECH
A Better Route to Xylan

More Bang for the Biofuel Buck

Sweet diesel! Discovery resurrects process to convert sugar directly to diesel

First solely-biofuel jet flight raises clean travel hopes

ENERGY TECH
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

ENERGY TECH
Cultural dimensions of climate change are underestimated, overlooked and misunderstood

Climate change and the ancient Maya

Future warming likely to be on high side of climate projections

Climate Likely to Be on Hotter Side of Projections




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement