Energy News  
ENERGY TECH
UMass Amherst materials chemists tap body heat to power 'smart garments'
by Staff Writers
Amherst MA (SPX) Jan 23, 2019

Materials chemists led by Trisha Andrew at UMass Amherst have developed a fabric that can harvest body heat to power small wearable microelectronics such as activity trackers. They produced and evaluated stretchy knitted bands of thermoelectric fabric that can generate thermo-voltages greater than 20 milliVolts when worn on the hand.

Many wearable biosensors, data transmitters and similar tech advances for personalized health monitoring have now been "creatively miniaturized," says materials chemist Trisha Andrew at the University of Massachusetts Amherst, but they require a lot of energy, and power sources can be bulky and heavy. Now she and her Ph.D. student Linden Allison report that they have developed a fabric that can harvest body heat to power small wearable microelectronics such as activity trackers.

Writing in an early online edition of Advanced Materials Technologies, Andrew and Allison explain that in theory, body heat can produce power by taking advantage of the difference between body temperature and ambient cooler air, a "thermoelectric" effect. Materials with high electrical conductivity and low thermal conductivity can move electrical charge from a warm region toward a cooler one in this way.

Some research has shown that small amounts of power can be harvested from a human body over an eight-hour workday, but the special materials needed at present are either very expensive, toxic or inefficient, they point out. Andrew says, "What we have developed is a way to inexpensively vapor-print biocompatible, flexible and lightweight polymer films made of everyday, abundant materials onto cotton fabrics that have high enough thermoelectric properties to yield fairly high thermal voltage, enough to power a small device."

For this work, the researchers took advantage of the naturally low heat transport properties of wool and cotton to create thermoelectric garments that can maintain a temperature gradient across an electronic device known as a thermopile, which converts heat to electrical energy even over long periods of continuous wear. This is a practical consideration to insure that the conductive material is going to be electrically, mechanically and thermally stable over time, Andrew notes.

"Essentially, we capitalized on the basic insulating property of fabrics to solve a long-standing problem in the device community," she and Allison summarize. "We believe this work will be interesting to device engineers who seek to explore new energy sources for wearable electronics and designers interested in creating smart garments."

Specifically, they created their all-fabric thermopile by vapor-printing a conducing polymer known as persistently p-doped poly(3,4-ethylenedioxythiophene) (PEDOT-Cl) onto one tight-weave and one medium-weave form of commercial cotton fabric. They then integrated this thermopile into a specially designed, wearable band that generates thermo-voltages greater than 20 milliVolts when worn on the hand.

The researchers tested the durability of the PEDOT-CI coating by rubbing or laundering coated fabrics in warm water and assessing performance by scanning electron micrograph, which showed that the coating "did not crack, delaminate or mechanically wash away upon being laundered or abraded, confirming the mechanical ruggedness of the vapor-printed PEDOT-CI."

They measured the surface electrical conductivity of the coatings using a custom-built probe and found that the looser weave cotton demonstrated higher conductivity than the tighter weave material. The conductivities of both fabrics "remained largely unchanged after rubbing and laundering," they add.

Using a thermal camera, they established that the wrist, palm and upper arms of volunteers radiated the most heat, so Andrew and Allison produced stretchy knitted bands of thermoelectric fabric that can be worn in these areas. The air-exposed outer side of the band is insulated from body heat by yarn thickness, while only the uncoated side of the thermopile contacts the skin to reduce the risk of allergic reaction to PEDOT-CI, they point out.

The researchers note that perspiration significantly increased the thermovoltage output of the stretchy armband, which was not surprising, as damp cotton is known to be a better heat conductor than dry fabrics, they observe. They were able to turn off heat transfer at will by inserting a heat-reflective plastic layer between the wearer's skin and the band, as well.

Overall, they say, "We show that the reactive vapor coating process creates mechanically-rugged fabric thermopiles" with "notably-high thermoelectric power factors" at low temperature differentials compared to traditionally produced devices. "Further, we describe best practices for naturally integrating thermopiles into garments, which allow for significant temperature gradients to be maintained across the thermopile despite continuous wear."

Research paper


Related Links
University of Massachusetts at Amherst
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
North Sea rocks could act as large-scale renewable energy stores
Edinburgh UK (SPX) Jan 22, 2019
Rocks in the seabed off the UK coast could provide long-term storage locations for renewable energy production, new research suggests. An advanced technique could be used to trap compressed air in porous rock formations found in the North Sea using electricity from renewable technologies. The pressurised air could later be released to drive a turbine to generate large amounts of electricity. Using the technique on a large scale could store enough compressed air to meet the UK's electri ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
US charges Chinese national for stealing energy company secrets

Making the world hotter: India's expected AC explosion

EU court backs Dyson on vacuum cleaner energy tests

Mining bitcoin uses more energy than Denmark: study

ENERGY TECH
North Sea rocks could act as large-scale renewable energy stores

Cartilage could be key to safe 'structural batteries'

Technique identifies electricity-producing bacteria

Scientists discover a process that stabilizes fusion plasmas

ENERGY TECH
Lidar lights up wind opportunities for Tilt in Australia

US Wind Inc. agrees to sell its New Jersey offshore lease to EDF Renewables North America

Wind to lead U.S. electric capacity additions at power plants in 2019

Upwind wind plants can reduce flow to downwind neighbors

ENERGY TECH
New class of solar cells, using lead-free perovskite materials

Signal Energy Australia to build 333MW Darlington Point Solar Plant in New South Wales

ASU engineers break solar cell record

Breakthrough in organic electronics

ENERGY TECH
Japan's Hitachi freezes British nuclear project

Framatome receives $49 million grant to accelerate enhanced accident tolerant fuel development

Why does nuclear fission produce pear-shaped nuclei?

Framatome develops mobile technology for non-destructive analysis of radioactive waste containers

ENERGY TECH
Scientists turn carbon emissions into usable energy

Researchers create 'shortcut' to terpene biosynthesis in E. coli

Yeast makes ethanol to prevent metabolic overload

Green catalysts with Earth-abundant metals accelerate production of bio-based plastic

ENERGY TECH
Oil prices led lower by rising U.S. production, inventories

Researchers find new ways to harness wasted methane

EIA sees fuel prices below 2018 average for the next two years

Venezuela opposition strategy depends on military support

ENERGY TECH
UN warns trade disputes, climate could disrupt growth

Warning to Davos: world 'sleep-walking' into climate disaster

Future of planet-cooling tech

Geoscientists reconstruct 900-year Northeast climate record









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.