The blob that ate the tokamak by Staff Writers Plainsboro NJ (SPX) Oct 20, 2017
To fuse hydrogen atoms into helium, doughnut-shaped devices called tokamaks must maintain the heat of the ultrahot plasma they control. But like boiling water, plasma has blobs, or bubbles, that percolate within the plasma edge, reducing the performance of the plasma by taking away heat that sustains the fusion reactions. Now, scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have completed new simulations that could provide insight into how blobs at the plasma edge behave. The simulations, produced by a code called XGC1 developed by a national team based at PPPL, performed kinetic simulations of two different regions of the plasma edge simultaneously. This ability produces a more fundamental and fuller picture of how heat moves from plasma to the walls, potentially causing damage. "In simulations, we often separate two areas at the plasma edge known as the pedestal and the scrape-off layer and focus on one or the other," said PPPL physicist Michael Churchill, lead author of a paper describing the results in the journal Plasma Physics and Controlled Fusion. "XGC1 is unique because it is able to simulate both regions simultaneously, using kinetic ion and electron equations. In fact, it is important to include both regions in simulations because they affect each other." Simulations allow scientists to explore plasma, the fourth and hottest state of matter in which electrons are separated from atomic nuclei, without running physical experiments that could be costly. They also sometimes provide insights that physical experiments do not. Simulations of turbulence at the edge of the plasma, near where the plasma approaches a tokamak's interior wall, are particularly important. The more that scientists understand such turbulence, the better able they will be to prevent moving blobs of plasma from forming in the plasma edge. If not controlled, these blobs could drain large amounts of heat from the confined plasma, and possibly either damage plasma-facing components or hinder the fusion reactions. The XGC1 code simulated plasma in high-confinement mode, or H-mode, a set of conditions that helps plasma retain its heat. In H-mode, the results showed, a large number of blobs form between the pedestal and the scrape-off layer, two conditions near the edge, and move towards the outer edge, crossing the magnetic field lines as they go. Blobs play an important role in the outward movement of particles in plasma. Blobs cause approximately 50 percent of the particle loss at the plasma edge, and researchers have observed blobs in a wide range of plasma devices, including tokamaks, figure-eight-shaped fusion devices known as stellarators, and linear machines. "The big picture is that blobs can pull energy and particles out of the plasma, and you don't want that," Churchill said. "You want to keep things confined." Scientists ran the simulation on America's fastest supercomputer, called Titan, at the Oak Ridge Leadership Computing Facility, a DOE Office of Science User Facility in Oak Ridge, Tennessee. Future research will focus on how the blobs form and how their behavior is affected by the shape of the tokamak. Scientists must also fully determine how density, temperature, and electromagnetic force affect the behavior of the blobs.
Plainsboro NJ (SPX) Oct 18, 2017 Researchers led by the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have proposed an innovative design to improve the ability of future fusion power plants to generate safe, clean and abundant energy in a steady state, or constant, manner. The design uses loops of liquid lithium to clean and recycle the tritium, the radioactive hydrogen isotope that fuels fusion r ... read more Related Links Princeton Plasma Physics Laboratory Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |