Energy News  
ENERGY TECH
Supercharging silicon batteries
by Staff Writers
Onna, Japan (SPX) Sep 15, 2017


The porosity of the nanostructured Tantalum (in black) enables the formation of silicon channels (in blue) allowing lithium ions to travel faster within the battery. The rigidity of the tantalum scaffold also limits the expansion of the silicon and preserve structural integrity. Image courtesy Okinawa Institute of Science and Technology Graduate University Nanoparticles by Design Unit.

As the world shifts towards renewable energy, moving on from fossil fuels, but at the same time relying on ever more energy-gobbling devices, there is a fast-growing need for larger high-performance batteries. Lithium-ion batteries (LIBs) power most of our portable electronics, but they are flammable and can even explode, as it happened to a recent model of smartphone.

To prevent such accidents, the current solution is to encapsulate the anode - which is the negative (-) electrode of the battery, opposite to the cathode (+) - into a graphite frame, thus insulating the lithium ions. However, such casing is limited to a small scale to avoid physical collapse, therefore restraining the capacity - the amount of energy you can store - of the battery.

Looking for better materials, silicon offers great advantages over carbon graphite for lithium batteries in terms of capacity. Six atoms of carbon are required to bind a single atom of lithium, but an atom of silicon can bind four atoms of lithium at the same time, multiplying the battery capacity by more than 10-fold.

However, being able to capture that many lithium ions means that the volume of the anode swells by 300% to 400%, leading to fracturing and loss of structural integrity. To overcome this issue, OIST researchers have now reported in Advanced Science the design of an anode built on nanostructured layers of silicon - not unlike a multi-layered cake - to preserve the advantages of silicon while preventing physical collapse.

This new battery is also aiming to improve power, which is the ability to charge and deliver energy over time.

"The goal in battery technology right now is to increase charging speed and power output," explained Dr. Marta Haro Remon, first author of the study. "While it is fine to charge your phone or your laptop over a long period of time, you would not wait by your electric car for three hours at the charging station."

And when it comes to providing energy, you would want your car to start off quickly at a traffic light or a stop sign, requiring a high spike in power, rather than slowly creeping forward. A well-thought design of a silicone-based anode might be a solution and answer these expectations.

The idea behind the new anode in the Nanoparticles by Design Unit at the Okinawa Institute of Science and Technology Graduate University is the ability to precisely control the synthesis and the corresponding physical structure of the nanoparticles. Layers of unstructured silicon films are deposited alternatively with tantalum metal nanoparticle scaffolds, resulting in the silicon being sandwiched in a tantalum frame.

"We used a technique called Cluster Beam Deposition," continued Dr. Haro. "The required materials are directly deposited on the surface with great control. This is a purely physical method, there are no need for chemicals, catalysts or other binders."

"We used a technique called Cluster Beam Deposition," continued Dr. Haro. "The required materials are directly deposited on the surface with great control. This is a purely physical method, there are no need for chemicals, catalysts or other binders."

The outcome of this research, led by Prof. Sowwan at OIST, is an anode with higher power but restrained swelling, and excellent cyclability - the amount of cycles in which a battery can be charged and discharged before losing efficiency.

By looking closer into the nanostructured layers of silicon, the scientists realized the silicon shows important porosity with a grain-like structure in which lithium ions could travel at higher speeds compared to unstructured, amorphous silicon, explaining the increase in power.

At the same time the presence of silicon channels along the Ta nanoparticle scaffolds allows the lithium ions to diffuse in the entire structure. On the other hand, the tantalum metal casing, while restraining swelling and improving structural integrity, also limited the overall capacity - for now.

However, this design is currently only at the stage of proof-of-concept, opening the door to numerous opportunities to improve capacity along with the increased power.

"It is a very open synthesis approach, there are many parameters you can play around," commented Dr. Haro. "For example, we want to optimize the numbers of layers, their thickness, and replace tantalum metal with other materials."

With this technique paving the way, it might very well be that the solution for future batteries, forecast to be omnipresent in our lives, will be found in nanoparticles.

Research paper

ENERGY TECH
Firebricks offer low-cost storage for carbon-free energy
Boston MA (SPX) Sep 15, 2017
Firebricks, designed to withstand high heat, have been part of our technological arsenal for at least three millennia, since the era of the Hittites. Now, a proposal from MIT researchers shows this ancient invention could play a key role in enabling the world to switch away from fossil fuels and rely instead on carbon-free energy sources. The researchers' idea is to make use of excess elec ... read more

Related Links
Okinawa Institute of Science and Technology (OIST) Graduate University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Scientists propose method to improve microgrid stability and reliability

ADB: New finance model needed for low-carbon shift in Asia

China merges energy giants into global leader

Power demand to peak in Europe summers, not winters: study

ENERGY TECH
Corvus Energy wins contract to provide battery systems for hybrid fishing vessels

Researchers challenge status quo of battery commercialization

More durable, less expensive fuel cells

A revolution in lithium-ion batteries is becoming more realistic

ENERGY TECH
Kimberly-Clark next U.S. company to draw more on renewables

UK wind electricity cheaper than nuclear: data

Last of the 67 turbines for a British wind farm installed

Light-based method makes remote wind measurements easier and more accurate

ENERGY TECH
Defects in next-generation solar cells can be healed with light

Dubai awards contract for final phase of solar park

Engineers develop tools to share power from renewable energy sources during outages

Obama-era solar power program reaches goal early

ENERGY TECH
Finland's TVO challenges approval of Areva bailout

EU parliament opposes bid to reduce testing of Fukushima food imports

PM opens country's fifth nuclear power plant

Jacobs JV wins support contract for nuclear research center

ENERGY TECH
A sweeter way to make green products

How to draw electricity from the bloodstream

Scientists make methanol using air around us

Could switchgrass help China's air quality?

ENERGY TECH
Rally in oil prices stalls despite global tensions

Iran 'prepared for any measure' for oil market stability

China provides $10 billion credit line to Iran

Russia's Gazprom raises investment guideline

ENERGY TECH
Warmer world may bring more local, less global, temperature variability

Series of potent hurricanes stokes scientific debate

Italy's drought seen from space

Periodic table of ecological niches could aid in predicting effects of climate change









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.