. Energy News .




.
ENERGY TECH
Sulfur in every pore
by Staff Writers
Munich, Germany (SPX) Apr 11, 2012

Illustration only.

From smartphones to e-bikes, the number of mobile electronic devices is steadily growing around the world. As a result, there is an increased need for batteries that are small and light, yet powerful. As the potential for the further improvement of lithium-ion batteries is nearly exhausted, experts are now turning to a new and promising power storage device: lithium-sulfur batteries.

In an important step toward the further development of this type of battery, a team led by Professor Thomas Bein of LMU Munich and Linda Nazar of Waterloo University in Canada has developed porous carbon nanoparticles that utilize sulfur molecules to achieve the greatest possible efficiency. (Angewandte Chemie, April 2012)

In prototypes of the lithium-sulfur battery, lithium ions are exchanged between lithium- and sulfur-carbon electrodes. The sulfur plays a special role in this system: Under optimal circumstances, it can absorb two lithium ions per sulfur atom. It is therefore an excellent energy storage material due to its low weight.

At the same time, sulfur is a poor conductor, meaning that electrons can only be transported with great difficulty during charging and discharging. To improve this battery's design the scientists at Nanosystems Initiative Munich (NIM) strive to generate sulfur phases with the greatest possible interface area for electron transfer by coupling them with a nanostructured conductive material.

To this end, Thomas Bein and his team at NIM first developed a network of porous carbon nanoparticles. The nanoparticles have 3- to 6-nanometer wide pores, allowing the sulfur to be evenly distributed. In this way, almost all of the sulfur atoms are available to accept lithium ions. At the same time they are also located close to the conductive carbon.

"The sulfur is very accessible electrically in these novel and highly porous carbon nanoparticles and is stabilized so that we can achieve a high initial capacity of 1200 mAh/g and good cycle stability," explains Thomas Bein. "Our results underscore the significance of nano-morphology for the performance of new energy storage concepts."

The carbon structure also reduces the so-called polysulfide problem. Polysulfides form as intermediate products of the electrochemical processes and can have a negative impact on the charging and discharging of the battery.

The carbon network binds the polysulfides, however, until their conversion to the desired dilithium sulfide is achieved. The scientists were also able to coat the carbon material with a thin layer of silicon oxide which protects against polysulfides without reducing conductivity.

Incidentally, the scientists have also set a record with their new material: According to the latest data, their material has the largest internal pore volume (2.32 cm3/g) of all mesoporous carbon nanoparticles, and an extremely large surface area of 2445 m2/g. This corresponds roughly to an object with the volume of a sugar cube and the surface of ten tennis courts. Large surface areas like this might soon be hidden inside our batteries.

"Spherical Ordered Mesoporous Carbon Nanoparticles with Extremely High Porosity for Lithium-Sulfur Batteries". Jorg Schuster, Guang He, Benjamin Mandlmeier, Taeeun Yim, Kyu Tae Lee, Thomas Bein and Linda F. Nazar. Angewandte Chemie, Article first published online: 1 MAR 2012 doi: 10.1038/nm.2720

Related Links
Ludwig-Maximilians-Universitat Munchen
Powering The World in the 21st Century at Energy-Daily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ENERGY TECH
UCLA Engineering researchers use electricity to generate alternative fuel
Los Angeles CA (SPX) Apr 03, 2012
Imagine being able to use electricity to power your car - even if it's not an electric vehicle. Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have for the first time demonstrated a method for converting carbon dioxide into liquid fuel isobutanol using electricity. Today, electrical energy generated by various methods is still difficult to store efficiently ... read more


ENERGY TECH
Some 'improved cookstoves' may emit more pollution than traditional mud cookstoves

Smart grid's global reach set to top $46B

New round of U.S. green energy loans?

Fukushima to be new geothermal site?

ENERGY TECH
Sulfur in every pore

US grabs lead over China in clean energy race

Israel mulls missile defense for gas rigs

SOCAR: Turkey pipeline under way in fall

ENERGY TECH
Reducing cash bite of wind power

GDF SUEZ, VINCI, CDC Infrastructure and AREVA mobilized for offshore wind power

Real-World Wind Turbine Performance Metrics and Just-in-Time Predictive Maintenance Software

Denmark OKs ambitious green energy deal

ENERGY TECH
World's largest solar thermal plant online

Kyocera to build Japan's biggest solar power plant

Ultra-thin solar cells developed

Maine Resort Basks in the Sun and Now Generates Solar Energy

ENERGY TECH
Bulgaria approves new reactor at nuclear plant

Spain's nuclear sector eyes growth in China

France waits for India to clarify n-liability framework

Work at Kudankulam quickens for first reactor

ENERGY TECH
Proterro Meets Key Productivity Milestones

Is bioenergy expansion harmful to wildlife?

Algae biofuels: the wave of the future

2-in-1 device uses sewage as fuel to make electricity and clean the sewage

ENERGY TECH
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

ENERGY TECH
India says EU tax a 'deal breaker' for climate talks

UN calls for funds for drought-hit Sahel

Brazil stresses need for world consensus at Rio+20 meet

March was warmest in US on record: US agency


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement