Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
Solving a mystery of thermoelectrics
by David Chandler for MIT News
Boston MA (SPX) May 01, 2014


This image shows the resonant bonding in lead telluride, one of the materials whose properties the team studied. It shows the calculated electron density distribution within the material. Illustration courtesy of Sangyeop Lee .

Materials that can be used for thermoelectric devices - those that turn a temperature difference into an electric voltage - have been known for decades. But until now there has been no good explanation for why just a few materials work well for these applications, while most others do not. Now researchers at MIT and elsewhere say they have finally found a theoretical explanation for the differences, which could lead to the discovery of new, improved thermoelectric materials.

The findings - by MIT graduate student Sangyeop Lee; Gang Chen, the Carl Richard Soderberg Professor of Power Engineering; and four others - are reported this week in the journal Nature Communications.

For thermoelectric applications, Chen explains, "It is important to find a material with low thermal conductivity" - since thermoelectrics work by maintaining a temperature difference from one side of a device to the other. If a material conducts heat well, then heat leaks quickly from the hot side to the cold side, reducing its efficiency in converting heat to electricity. But predicting which materials have low conductivity - which is to say, those that are good thermal insulators - has proved elusive.

For example, some compounds that are good insulators are made up of elements similar to those found in other compounds that are not good insulators at all. "Why," Chen wondered, "does one material have a low thermal conductivity, while another that is very similar does not?"

The solution to the puzzle turned out to come from work in other areas, including research to understand a different class called phase-change materials. These are being studied as a potential basis for computer memory devices that would retain information even when power is switched off. Phase-change materials change from an orderly, crystalline structure to a disordered structure in response to a change in temperature; they can then be switched back again with another temperature change.

Analysis of phase-change materials showed that they work because of a particular kind of chemical bonding, called resonant bonding - a type of bond in which electrons flip back and forth between several adjacent atoms. While resonant bonds' effects on electrical and optical properties have been studied, nobody had previously examined their effect on thermal properties, Lee says.

"There is little communication between people doing phase-change research and those doing thermoelectric research," Lee says. Interdisciplinary meetings at MIT helped lay the foundation for this research, he says: "This is an example where communication between people with different backgrounds can lead to new opportunities and boost understanding."

It turns out that electrons' "flipping" in resonant bonding leads to long-range interactions among their atoms, Chen says - producing the material's low thermal conductivity.

Using first-principles calculations to account for such behavior with resonant bonding, Lee was able to demonstrate that this effect could explain known discrepancies between similar materials that of low and high thermal conductivity.

"We found some general rules which can be used to explain other materials," Lee says.

This could lead to the discovery of new kinds of materials that also have very low thermal conductivity.

That, however, is just "one piece of the puzzle," Chen says: In order to be useful for thermoelectric devices, a material must combine low thermal conductivity with high electrical conductivity. Figuring out which materials possess that combination of characteristics will require further research, he says.

.


Related Links
Massachusetts Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Grasp of SQUIDs dynamics facilitates eavesdropping
Heidelberg, Germany (SPX) Apr 27, 2014
Theoretical physicists are currently exploring the dynamics of a very unusual kind of device called a SQUID. This Superconducting Quantum Interference Device is a highly sensitive magnetometer used to measure extremely subtle magnetic fields. It is made of two thin regions of insulating material that separate two superconductors - referred to as Josephson junctions - placed in parallel int ... read more


ENERGY TECH
Energy-subsidy reform can be achieved with proper preparation, outside pressure

Siemens to buy Rolls Royce energy assets for 950 mn euro

Iran, Russian energy deal frustrates U.S. government

U.S. Energy Department renews focus on grid security

ENERGY TECH
Solving a mystery of thermoelectrics

Breaking up water: Controlling molecular vibrations to produce hydrogen

Sweden's Vattenfall abandons research on CO2 storage

Iraq oil exports rebound but sales hit by attacks

ENERGY TECH
LDD completes relief drilling campaign for UK offshore wind farm

Benefits from a low-carbon economy are clear, Scotland says

E.ON anchors transformer to offshore wind farm

New Software Service Promises to Convert More Wind Into Power

ENERGY TECH
National Bank of Canada backing Ontario solar facilities

Taking the lead out of a promising solar cell

21.2% World Record Efficiency PERC Silicon Solar Cell Using Heraeus Ag Metallization Pastes

Tin helps scientists build new cheaper solar cells

ENERGY TECH
Westinghouse Expands to Meet Latin America's Energy Needs

Exelon buys Pepco for $6.83 bn in energy deal

Fukushima operator books $4.3 bn profit on bailout, rate hike

Taiwan uses water cannon to disperse anti-nuclear protesters

ENERGY TECH
Ozone levels drop 20 percent with switch from ethanol to gasoline

Study casts doubt on climate benefit of biofuels from corn residue

Rethink education to fuel bioeconomy

Going nuts? Turkey looks to pistachios to heat new eco-city

ENERGY TECH
China issues first assessment on space activities

China launches experimental satellite

Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

ENERGY TECH
New study sheds light on global warming trends

UN chief urges 'bold' action to curb global warming

White House pushes climate change efforts

US warns of wide climate impact




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.