Simple equation directs creation of clean-energy catalysts by Staff Writers Lincoln NB (SPX) May 15, 2018
New guidelines laid down by Nebraska and Chinese researchers could steer the design of less costly, more efficient catalysts geared toward revving up the production of hydrogen as a renewable fuel. Nebraska's Xiao Cheng Zeng and colleagues have identified several overlooked factors critical to the performance of single-atom catalysts: individual atoms, usually metallic and anchored by surrounding molecular frameworks, that kick-start and accelerate chemical reactions. The team folded those variables into a simple equation requiring what Zeng described as "back-of-the-envelope calculations." That equation should allow researchers to easily predict how the choice of atom and its surrounding material will affect catalytic performance. To date, researchers have often relied on time-consuming trial and error to find promising single-atom catalysts. "All this (relevant) information can be easily gathered from a textbook," said Zeng, Chancellor's University Professor of chemistry. "Even before an experiment, you can quickly see whether it's a good way to make the catalyst. We're simplifying the process." Using its equation, the team discovered several atom-framework combinations that approximate the performance of precious-metal catalysts - platinum, gold, iridium - at mere thousandths of the cost. One swapped out a platinum atom for manganese; another replaced iridium with cobalt. "There are two (primary) ways to reduce the price of these catalysts," Zeng said. "One is to use as little of the metals as possible - so single-atom catalysts are the cheapest. The other direction is finding alternative metals like iron or aluminum or zinc that are very cheap." Two of the team's atom-framework combinations can split water into its constituent parts: an oxygen atom and two hydrogen atoms, the latter of which can serve as a green fuel for vehicles and other applications. Two other catalyst candidates help oxygen atoms take on more electrons, priming them to bond with positively charged hydrogen atoms and form water - the desired byproduct of hydrogen fuel cells. "Right now, this is not the prevailing way to produce hydrogen," Zeng said. "The industry still uses fossil fuels to produce hydrogen. It's just cheaper. So that's our motivation: lower the cost so that all these cleaner, fuel-producing reactions become (viable)."
Scouting Report Every atom in that immediate network also has a known attraction to electrons, with the strength of that attraction further influencing catalytic performance. The arrangement and qualities of those neighboring atoms matter, Zeng said, in the same way that an offensive line matters to a stationary, pocket-passing quarterback. And the team's new equation could act as a scouting report for researchers looking to amplify the strengths or cover the weaknesses of their personnel, he said. For Zeng and his colleagues, that personnel consisted of more than 20 so-called transition metals that are generally worse than precious metals at catalyzing reactions. But the team showed that surrounding a cobalt, iron or other second-string atom with the right environment - sometimes a honeycomb of carbon atoms known as graphene, sometimes a network of nitrogen atoms - can elevate its performance. "Every offensive line is different," Zeng said. "How do you make the quarterback function the best in that pocket? How do you find the best quarterback within different pockets? "If you have a two-star quarterback, you need a better offensive line. But even a backup quarterback can perform well with the right line." Zeng authored the study with colleagues from Beijing University of Chemical Technology. The study appeared in the journal Nature Catalysis and was highlighted in Chemical and Engineering News, a magazine published by the American Chemical Society.
World's fastest water heater Hamburg, Germany (SPX) May 15, 2018 Scientists have used a powerful X-ray laser to heat water from room temperature to 100,000 degrees Celsius in less than a tenth of a picosecond (millionth of a millionth of a second). The experimental set-up, that can be seen as the world's fastest water heater, produced an exotic state of water, from which researchers hope to learn more about the peculiar characteristics of Earth's most important liquid. The observations also have practical use for the probing biological and many other samples wi ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |