Siberian chemists have improved hydrogen sensors by Staff Writers Krasnoyarsk, Russia (SPX) Jan 19, 2018
A group of scientists from the Siberian Federal University (SFU, Krasnoyarsk, Russia) and the Nikolaev Institute of Inorganic Chemistry (NIIC, Novosibirsk, Russia) combined the useful properties of metal phthalocyanines and palladium membranes in order to create active layers in hydrogen detectors. This operation significantly increases the sensitivity of the sensors. High-sensitivity sensors for detecting various gases are very important for the environment, as they allow to make qualitative and quantitative assessment of the content of various gases in the air (for example, hazardous carbon monoxide or ammonia). The data obtained makes helps to combat pollution. On the other hand, there sensors play an important role in medicine. There is a disease called maladsorption: those diagnosed with it exhale more hydrogen. If we make high-sensitivity sensors capable of detecting a small increase in the concentration of hydrogen, this disease can be successfully diagnosed. The detectors discussed in the paper have a three-layered structure. At the bottom there lies a substrate (which is also a conducting electrode), a film of phthalocyanines (heterocyclic compounds of dark blue color) is applied to it, and finally palladium over this film. It is not easy to produce such a sensor. To do this, it is necessary to obtain a thin film of phthalocyanines, and then deposit a layer of palladium on top. To get this metal, precursors are used (organic compounds that contain palladium atoms). After heating they decompose, organic fragments evaporate, and atoms of metal form a layer with the required structure and thickness. The sensor works like this: hydrogen easily penetrates palladium and, acting on the surface of the phthalocyanine film, changes its conductivity. "Thin phthalocyanine films are semiconductors themselves. And it is from the change in conductivity that we can judge whether hydrogen is "clinging" or not, and in what concentration it is contained in the air", said Pavel Krasnov, Ph.D. in Physics and Mathematics, senior researcher at the Institute of Nanotechnology, Spectroscopy and Quantum chemistry of SFU. The authors of these articles for the first time obtained and investigated the crystal structure of thin films of palladium phthalocyanines, as well as the way in which its structure is altered by fluorine atoms (acting as substituents). Phthalocyanine is a flat molecule with hydrogen atoms at its edges. Earlier the authors of the paper have shown that the introduction of fluorine atoms into the phthalocyanine structure increases the sensory response (sensitivity indicator) of these compounds, as they interact with gas molecules. Fluorine is a more electronegative element compared to hydrogen, as a result of which it is able to "pull" more electrons from other atoms of phthalocyanine, including the metal atom located in the center. An increase in the positive charge of a metal atom promotes stronger binding of gas molecules, since such a bond arises predominantly from the donor-acceptor mechanism. A gas molecule is an electron donor (gives electrons), and a metal atom is their acceptor (attaches them). This hypothesis was confirmed by scientists from SFU with the help of quantum chemical calculations, and their colleagues from NIIC - as a result of the direct carrying out of experimental work that eventually allowed the prototyping of sensors. Now scientists plan to continue project. They would like to test the possibility of using different substrates - to "plant" phthalocyanines not on electrodes, but on carbon structures - i.e., graphene or carbon nanotubes. Such a replacement will give a stronger response and make the sensor more sensitive to hydrogen. How much sensitivity will grow, only experiments can show. The second promising line of research is to make the palladium layer thinner (also in order to improve the response of the sensor). The study is reported in the journals Dyes and Pigments and International Journal of Hydrogen Energy.
Umea, Sweden (SPX) Jan 11, 2018 Researchers from Umea University and Linkoping University in Sweden have developed light-emitting electrochemical cells (LECs) that emit strong light at high efficiency. As such, the thin, flexible and light-weight LEC promises future and improved applications within home diagnostics, signage, illumination and healthcare. The results are published in Nature Communications. The light-emitti ... read more Related Links Siberian Federal University Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |