Shedding light on the mystery of the superconducting dome by Staff Writers Groningen, Netherlands (SP1X) Mar 26, 2018
University of Groningen physicists, and colleagues from Nijmegen and Hong Kong, have induced superconductivity in a monolayer of tungsten disulfide. By using an increasing electric field, they were able to show how the material turns from an insulator into a superconductor and then back into a 're-entrant' insulator again. Their results show the typical 'dome-shaped' superconducting phase, and finally provide an explanation for this phenomenon. The results were published in Proceedings of the National Academy of Sciences on 19 March. The scientists, led by University of Groningen associate professor Justin Ye, used an electric field to induce superconductivity in a monolayer of the semiconductor tungsten disulfide (WS2). In the initial state with very few carriers, the WS2 behaves as an insulator. 'Basically, the electric field adds carriers to this normal band insulator, which increases the conductivity', explains Ye. At low temperatures, this initiates a superconducting state. In the superconducting phase, the temperature at which superconductivity occurs rises as the electric field increases before dropping again. This kind of dome-shaped curve has been observed in many superconductors over several decades. It is one of the hallmarks of high temperature superconductors, many mysteries of which remain to be explained. A similar dome was recently also observed in several superconductors that were induced or controlled by field effect. What Ye and his colleagues observed was that, as the electric field increases even further, the system goes from superconductor back to insulator again. 'This full range for the phase diagram, from insulator to superconductor and then to re-entry insulator, had never before been observed this clearly', says Ye. 'We managed it, because we worked with a truly 2D material and used ionic liquid to create an electric field that is much stronger than what is usually applied.' Normally, as more carriers are added to a bulk or quasi-2D system, the electric field is eventually blocked. Ye: 'But in a WS2 monolayer, our stronger field can still pass through, which is why we were able to observe the entire range and eventually reach the insulating phase.'
Counterintuitive This is very counterintuitive, Ye adds: 'People normally believe that higher gating means more carriers, hence more metallic behaviour.' This discovery could pave the way for the rational design of 2D superconducting devices that function at relatively high temperatures. 'Understanding is the first step to controlling the properties of materials for devices', concludes Ye. J.M. Lu, O. Zheliuk, Q.H. Chen, I. Leermakers, N.E. Hussey, U. Zeitler, and J.T. Ye: A full superconducting dome of strong Ising protection in gated monolayer WS2. PNAS 19 March 2018.
Thermally driven spin current in DNA Washington DC (SPX) Mar 26, 2018 An emerging field that has generated a wide range of interest, spin caloritronics, is an offshoot of spintronics that explores how heat currents transport electron spin. Spin caloritronics researchers are particularly interested in how waste heat could be used to power next-generation spintronic devices. Some of these potential devices range from ultrafast computers that need next to no power, to magnetic nanoparticles that deliver drugs to cells. The thermally driven transport application of spin ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |