Energy News  
ENERGY TECH
Separating the sound from the noise in hot plasma fusion
by Staff Writers
Washington DC (SPX) Sep 13, 2018

EAST, the Experimental Advanced Superconducting Tokamak located in Hefei, China, with the researcher's new diagnostic system located in the bottom right-hand corner

In the search for abundant clean energy, scientists around the globe look to fusion power, where isotopes of hydrogen combine to form a larger particle, helium, and release large amounts of energy in the process. For fusion power plants to be effective, however, scientists must find a way to trigger the low-to-high confinement transition, or "L-H transition" for short. After a L-H transition, the plasma temperature and density increase, producing more power.

Scientists observe the L-H transition is always associated with zonal flows of plasma. Theoretically, zonal flows in a plasma consist of both a stationary flow with a near-zero frequency and one that oscillates at a higher frequency called the geodesic acoustic mode (GAM), which is a global sound wave of the plasma.

For the first time, researchers at Hefei University of Technology have detected GAM at two different points simultaneously within the reactor. This new experimental setup will be a useful diagnostic tool for investigating the physics of zonal flows, and their role in the L-H transition. The researchers report these findings in a new paper published in Physics of Plasmas, from AIP Publishing.

Zonal flows occur anywhere there is turbulence, such as inside a fusion device or in a planet's atmosphere.

"The most famous zonal flows in nature may be the well-known Jovian belts and zones, which make Jupiter look like a colorful, multilayered cake," said Ahdi Liu, an author on the paper. In fusion plasmas, zonal flows are crucial for regulating turbulence and particle transport within the reactor. "With the gradual improvement of diagnostic technology, zonal flows in fusion plasma has become a research hot spot in the past two decades," Liu said.

In these experiments, researchers used the Experimental Advanced Superconducting Tokamak (EAST), a magnetic fusion energy reactor in Hefei, China. They installed two Doppler reflectometers on different sides of EAST, which can detect fluctuations in turbulence and plasma density with high precision. The detected GAM had a pitch of F, five octaves above middle C.

Previously, researchers at ASDEX-U, the fusion research device at the Max Plank Institute of Plasma Physics, used a similar system to detect GAM, but they measured the plasma at a single location, which makes the setup prone to interference.

"This disadvantage is the main motivation for using two sets of Doppler reflectometers," Liu said. "We could 'purify' the GAM information by comparing the two location's measurements."

The measurements taken at the two points did not entirely agree, showing that each reflectometer also picked up information from nonzonal flows. "It is completely necessary to extract accurate zonal flows information from multipoint measurement," Liu said.

Using both measurements, they could clearly show that GAM interacted with the ambient turbulence. Going forward, the researchers will further investigate the role of zonal flows in turbulence and turbulent transport within EAST.

Research Report: "Observation of geodesic acoustic mode in EAST using Doppler backscattering system"


Related Links
American Institute of Physics
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Optimal magnetic fields for suppressing instabilities in tokamaks
Princeton NJ (SPX) Sep 11, 2018
Fusion, the power that drives the sun and stars, produces massive amounts of energy. Scientists here on Earth seek to replicate this process, which merges light elements in the form of hot, charged plasma composed of free electrons and atomic nuclei, to create a virtually inexhaustible supply of power to generate electricity in what may be called a "star in a jar." A long-time puzzle in the effort to capture the power of fusion on Earth is how to lessen or eliminate a common instability that occur ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Electricity crisis leaves Iraqis gasping for cool air

Energy-intensive Bitcoin transactions pose a growing environmental threat

Germany thwarts China by taking stake in 50Hertz power firm

Global quadrupling of cooling appliances to 14 billion by 2050

ENERGY TECH
Not too wet, not too dry: plasma-treated fuel cell gets it just right

Optimal magnetic fields for suppressing instabilities in tokamaks

Pushing 'print' on large-scale piezoelectric materials

Cathode fabrication for oxide solid-state batteries at room temperature

ENERGY TECH
Wind Power: It is all about the distribution

Big wind, solar farms could boost rain in Sahara

DNV GL supports creation of China's first HVDC offshore wind substation

China pushes wind energy efforts further offshore

ENERGY TECH
Power grid automating as wind, solar and global electrification drive market

Researchers use silicon nanoparticles for enhancing solar cells efficiency

PV Powerhouses Panasonic and SolarEdge Introduce Optimized High-performance Smart Module

Changing the type of silicon etching drops solar power costs by more than 10 percent

ENERGY TECH
MIT Energy Initiative study reports on the future of nuclear energy

Austria to appeal EU court ruling on UK nuclear plant

S.Africa drops Zuma's nuclear expansion dreams

Experts voice safety concerns about new pebble-bed nuclear reactors

ENERGY TECH
Barriers and opportunities in renewable biofuels production

Methane to syngas catalyst: two for the price of one

Biodegradable plastic blends offer new options for disposal

Breakthrough could see bacteria used as cell factories to produce biofuels

ENERGY TECH
Court scraps multibillion-dollar Ecuador damages against Chevron

Iran opens new consulate in Iraq's Basra after attack

Oil prices down after Pompeo outlines plan to get nations off Iranian oil

Gulf, US commanders to hold talks in Kuwait

ENERGY TECH
Episodic and intense rain caused by ancient global warming

Climate extremes 'key driver' behind rising global hunger: UN

Ban Ki-moon, Bill Gates head climate body

Prehistoric changes in vegetation help predict future of Earth's ecosystems









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.