Scientists turn to the quantum realm to improve energy transportation by Staff Writers Tokyo, Japan (SPX) Aug 20, 2018
Ant-Man knows - the quantum realm holds shocking revelations and irrational solutions. Taking a page from the Marvel Universe, researchers based at the National Institute of Informatics (NII) in Tokyo, Japan, designed a more efficient quantum transport system by adding even more noise to it. They published their results on July 24 in Quantum Information, a Nature Partner Journal. "Energy transport is at the core of natural life, as well as our current technology," said Kae Nemoto, a professor at the National Institute of Informatics and an author of the paper. "Many technological improvements have been achieved by better device-engineering to reduce the effects of noise and imperfections, which seems like a perfectly logical approach. We found - although nature already knew this - that energy transport can actually be enhanced by adding environmental noise." Within quantum mechanics, energy behaves like a child in a mirror funhouse. The child's face stares back from a maze of reflective surfaces, and it's almost impossible for her to find the exit until she moves. As she moves, the faces move across the mirrors. Once she finds the exit, she moves through, and her reflection is gone from the mirrors. The scientists examined how bacteria manage to efficiently harvest energy from light sources through photosynthesis. In photosynthesis, the energy moves throughout the cell all at once, looking for where it should go. Once it finds the spot, all of the other versions collapse in. The energy doesn't expend itself bouncing all over the cell - it splits the work. However, this process cannot be exempted from environmental effects. Usually, environmental noise is considered as a negative factor. For example, interference from physically close neighbors tends to slow down the process significantly. The researchers designed a computer simulation based on this process, but added a correlated noise to the path where energy is going through. Surprisingly, the energy transfer was significantly accelerated with anti-correlated noise. "There is now clear evidence that noise can help in energy transport," Nemoto said. "This can be applied to more complex networks, and we are working on designing more realistic energy transport systems. If we can speed up energy transport, we must also be able to slow it down, too." The researchers plan to continue studying exactly how noise influences the speed of energy transport with the goal of gaining control over the system to precisely fine tune its efficiency.
Advanced plasma switch for more efficient transmission Plainsboro NJ (SPX) Aug 20, 2018 Inside your home and office, low-voltage alternating current (AC) powers the lights, computers and electronic devices for everyday use. But when the electricity comes from remote long-distance sources such as hydro-power or solar generating plants, transporting it as direct current (DC) is more efficient - and converting it back to AC current requires bulky and expensive switches. Now the General Electric (GE) company, with assistance from scientists at the U.S. Department of Energy's (DOE) Prince ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |