Energy News  
ENERGY TECH
Scientists take step toward safer batteries by trimming lithium branches
by Staff Writers
Matsumoto, Japan (SPX) Mar 01, 2018

illustration only

A collaborative team of researchers from Shinshu University in Japan have found a new way to curb some of the potential dangers posed by lithium ion batteries.

The team, led by Susumu Arai, a professor of the department of materials chemistry and head of Division for Application of Carbon Materials at the Institute of Carbon Science and Technology at Shinshu University, published their results recently in Physical Chemistry Chemical Physics.

These batteries, typically used in electric vehicles and smart grids, could help society realize a low-carbon future, according the authors. The problem is that while lithium could theoretically conduct electricity at high capacity, lithium also results in what is known as thermal runaway during the charge and discharge cycle.

"Lithium metal is inherently unsuitable for use in rechargeable batteries due to posing certain safety risks," said Arai. "Repeated lithium deposition/dissolution during charge/discharge can cause serious accidents due to the deposition of lithium dendrites that penetrate the separator and induce internal short-circuiting."

As the need for batteries capable of more energy capacity increases, the need for more secure storage within the battery also becomes critical.

Dendrites, named after their biological brethren, branch off a main source and send electrical impulses at locations that may not be secured.

"A number of approaches have been developed to prevent the growth of lithium dendrites... which are complicated and have some problems," said Masahrio Shimizu, an assistant professor and the paper's first author "In contrast, our strategy of adding magnesium salt is extremely simple."

The researchers introduced a type of magnesium salt capable of combining with lithium, to stop lithium's continued dendritic branching. It worked, but they found it difficult to reverse, which is necessary in rechargable batteries.

Now, the researchers are studying the benefits of other types of magnesium salts, as well as working to improve the electrochemical stability of the salt combined with lithium to make reversal easier.

The researchers hope to solve the issues with this plating technology and eventually achieve a compact and high-capacity battery.

"We aim to show the significantly improved reversibility of lithium deposition/dissolution and to realize stable operation for at least 1,000 cycles," said Arai "The ultimate goal is to create batteries to run for 500 kilometers with full charge in electric vehicles."

Research paper


Related Links
Shinshu University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Chemical cluster could transform energy storage for large electrical grids
Buffalo NY (SPX) Feb 15, 2018
To power entire communities with clean energy, such as solar and wind power, a reliable backup storage system is needed to provide energy when the wind isn't blowing and the sun isn't out. One possibility is to use any excess solar- and wind-based energy to charge solutions of chemicals that can subsequently be stored for use when sunshine and wind are scarce. During these down times, chemical solutions of opposite charge can be pumped across solid electrodes, thus creating an electron exchange that pro ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Grids from Turkmenistan, Afghanistan and Pakistan could be connected

Coal phase-out: Announcing CO2-pricing triggers divestment

State utilities called to pass U.S. tax benefits to consumers

Magnetic liquids improve energy efficiency of buildings

ENERGY TECH
Scientists take step toward safer batteries by trimming lithium branches

Charging ahead to higher energy batteries

Shedding high-power laser light on the plasma density limit

New method for waking up devices

ENERGY TECH
World's first floating wind farm put to the test

New wind farm construction starts in Italy

Ireland pushing for greener economy

China wind turbine-maker guilty of stealing US trade secrets

ENERGY TECH
Avaada Power commits bllion to Uttar Pradesh solar projects

Why polymer solar cells deserve their place in the sun

New clean energy targets put South Australia on the world map

A new approach towards highly efficient and air-stable perovskite solar cells

ENERGY TECH
Framatome completes purchase of Schneider Electric's instrumentation and control nuclear business

Greenpeace protesters jailed for French nuclear stunt

Austria sues over EU approval of Hungary nuclear plant

Researchers run first tests of unique system for welding highly irradiated metal alloys

ENERGY TECH
Evolution plays many tricks against large-scale bioproduction

Digestive ability of ancient insects could boost biofuel development

New tool tells bioengineers when to build microbial teams

Pausing evolution makes bioproduction of chemicals affordable and efficient

ENERGY TECH
New funding surfaces for offshore Gambia

Schlumberger and Subsea 7 propose joint venture

Crude oil prices bounce back after supply-side jitters

Seventh oil discovery made offshore Guyana

ENERGY TECH
Extinct lakes of the American desert west

Even without the clean power plan, US can achieve Paris Agreement emissions reductions

Key to predicting climate change could be blowing in the wind, researchers find

Research identifies 'evolutionary rescue' areas for animals threatened by climate change









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.