Energy News  
Revolutionary Method Generates New Template For Microelectronics

File image.
by Staff Writers
Washington DC (SPX) Feb 25, 2009
Researchers say a newly tested method for producing super dense, defect-free, thin polymer films is the fastest, most efficient method ever achieved and it may dramatically improve microelectronic storage capabilities such as those in computer memory sticks.

In the journal Science, researchers at the University of Massachusetts Amherst and their colleagues at the University of California Berkeley, report how they designed a new way to guide the self-assembly of the material used to store computer memory, layered block copolymers, and generate up to 10 times more storage space than similarly sized copolymers.

The researchers say they developed a defect-free method that can generate more than 10-terabit-per-square-inch copolymer where other efforts achieved at most one terabit per square inch. A terabit is an information storage unit equal to one trillion bits.

"We can generate nearly perfect arrays over macroscopic surfaces where the density is over 15 times higher than anything achieved before," said Thomas Russell director of the UMass Materials Research Science and Engineering Center.

He co-led the research with Ting Xu, a member of the Department of Materials Science and Engineering at Berkeley. "We applied a simple concept to solve several problems at once, and it really worked out," Russell said.

The concept involved stacking atoms more closely together than previously thought possible to produce the highest density copolymer ever achieved, one capable of storing more information than previous copolymers. Researchers used surface ridges of a base crystal to guide the assembly very much like using the corrugations in cardboard to direct how closely marbles can be packed together.

For the copolymer's base layer, the researchers used commercially-available sapphire wafers, which start out flat. After heating them from 1300 to 1500 degrees Celsius for 24 hours, the wafer's surface reorganized into a sawtooth topography with an inherent orientation.

A thin copolymer film layer then was applied causing the underlying sawtooth corrugations to guide the film's self-assembly in a highly-ordered way to form an ultra-dense hexagonal, or honeycomb, crystalline lattice.

Additionally, by varying the annealing temperature, the scientists were able to change the angle and height of the sawteeth and the depth of the troughs between their peaks. The result enabled researchers to produce more densely packed troughs, which is where computer memory is stored.

The work was supported by the National Science Foundation and the Department of Energy's Office of Basic Energy Science.

"I expect this new method of producing highly ordered macroscopic arrays of nanoscopic elements will revolutionize the microelectronic and storage industries and perhaps others," said Russell.

He points out most previous efforts to create a well-ordered base material onto which electronic information is stored topped out at 15 nanometers for the smallest achievable pattern size. But "we've shattered that barrier and I think we can go farther," Russell said.

"This research by the teams at UMass Amerherst and Berkeley represents a significant breakthrough in the use of polymer self-assembly to create a high density of addressable locations in a thin film," said NSF program manager William J. Brittain.

"Most significantly, the simple crystalline lattice used as the template may serve as a revolutionary step for a new generation of computer memory."

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
National Science Foundation
Powering The World in the 21st Century at Energy-Daily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Secrets Behind High Temperature Superconductors Revealed
London, UK (SPX) Feb 25, 2009
Scientists from Queen Mary, University of London and the University of Fribourg (Switzerland) have found evidence that magnetism is involved in the mechanism behind high temperature superconductivity.







  • Secrets Behind High Temperature Superconductors Revealed
  • Revolutionary Method Generates New Template For Microelectronics
  • Electricity Systems Can Cope With Large-Scale Wind Power
  • BP to pay 179 million dollars to settle Texas pollution case

  • Launch date to be set for Iran's first nuclear plant
  • Italy takes first step to return to nuclear energy
  • Patience Pays Off With Methanol For Uranium Bioremediation
  • Rio Tinto to explore for uranium in Jordan

  • Scientist Models The Mysterious Travels Of Greenhouse Gas
  • Global Warming May Delay Recovery Of Stratospheric Ozone
  • Science In The Stratosphere
  • Americans Owe Five Months Of Their Lives To Cleaner Air

  • Activists slam Finnish paper maker for logging 'virgin forest'
  • African forests gobble up more CO2: study
  • Study: Trees absorb one-fifth of CO2 gas
  • Clinton, Indonesia need to act on climate: environmentalists

  • Microbes Were Key In Developing Modern Nitrogen Cycle
  • Biologist Discusses Sacred Nature Of Sustainability
  • Mass Media Often Failing In Its Coverage Of Global Warming
  • Aerosols - Their Part In Our Rainfall

  • Electric car charging stations power-up in San Francisco
  • China's Chery Auto unveils electric car: company
  • Chinese auto maker plans to take on giants with electric cars
  • Nearly 1,500 more cars in Beijing daily: state media

  • Major airlines call for climate deal to include aviation
  • Swiss aircraft firm to cut jobs in Ireland
  • Bank of China extends massive credit to state aircraft maker
  • Shanghai Airlines seeks capital injection

  • Nuclear Power In Space - Part 2
  • Nuclear Power In Space
  • Outside View: Nuclear future in space

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement