Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
Researchers tap into CO2 storage potential of mine waste
by Staff Writers
Vancouver, Canada (SPX) Nov 20, 2012


With the global price of carbon emissions credits expected to rise, SP rock could become even more valuable. However, in order to achieve substantial CO2 sequestration in SP rock, the somewhat sluggish chemical reactions that naturally fix CO2 require a jump start.

It's time to economically value the greenhouse gas-trapping potential of mine waste and start making money from it, says mining engineer and geologist Michael Hitch of the University of British Columbia (UBC). Hitch studies the value of mine waste rock for its CO2-sequestration potential, or "SP." He says mining companies across Canada will, in future, be able to offset CO2 emissions with so-named "SP rock," and within 25 years could even be selling emissions credits.

Digging, trucking and processing make mining an energy-intensive industry that emits greenhouse gases. However, mine waste rock that is rich in the mineral magnesium silicate has an inherent ability to react with CO2 and chemically "fix" it in place as magnesium carbonate-an ability that can be greatly enhanced with some processing.

Hitch and his colleagues note that this capacity for CO2 fixation can be five to ten times greater than total greenhouse gas production from some mine operations. Nickel, diamond, copper, chromite, platinum, palladium, talc, and asbestos mines could all be contenders. Some large mines, the researchers add, could fix 5 million tonnes or more of CO2 per year.

"I don't like waste," asserts Hitch. "I like to see efficient use of the resources."

Instead of using just 1 per cent of the materials from a big mining pit, he explains, a company could receive value from the non-commodity rock. "All of a sudden this material starts having value, and this material starts taking on a position in the company's cash flow as a byproduct," says Hitch, adding, "It really kind of changes the dynamics of the mining operation."

With the global price of carbon emissions credits expected to rise, SP rock could become even more valuable. However, in order to achieve substantial CO2 sequestration in SP rock, the somewhat sluggish chemical reactions that naturally fix CO2 require a jump start.

Hitch is working on this problem alongside researchers Greg Dipple, team lead, and Ulrich Mayer, both of UBC's Department of Earth, Ocean and Atmospheric Sciences, and Gordon Southam, with the University of Western Ontario's Department of Earth Science. The collaboration is being funded by Carbon Management Canada, a Network of Centres of Excellence that funds research to produce the technology, knowledge, and human capacity that will reduce carbon emissions in the fossil energy industry and in other large-scale emitters.

Two of the team's primary goals are to measure the rate of CO2 fixation in mine waste rock and tailings in a lab setting and to speed up the process. Team members have already observed that CO2 fixation is greatly accelerated in mine tailings, presumably due mainly to the large surface area exposed and available to react after rocks are crushed into small particles.

Dipple's lab reports that their previous research has demonstrated that CO2 is trapped in mineral precipitates at rates of up to 50,000 tonnes per year within tailings during mine operations, and continues to be sequestered after mine operations cease. Rates of fixation are limited by the dissolution of CO2 in water and one area of investigation involves increasing the concentration of CO2 supplied to a slurry similar in chemical composition to tailings process water.

Results show a 200-fold rate of increase over atmospheric weathering of some minerals by increasing the concentration of CO2 in the air passed through the slurry to 10%.

Hitch's lab is currently grinding rock and pre-treating the material in order to change its physical and chemical properties. Dipple's group will then examine the material's ability to fix CO2. The collaborating researchers hope to move to field trials in five years.

Meanwhile, Southam's UWO research group is studying the role of microbes in fixing CO2 and precipitating carbonate minerals, in particular as sedimentary rock. They are also working on methods to accelerate this process.

Another important goal is to use computer modeling to predict the sequestration potential of rocks at specific mining sites. To that end, Hitch is designing a way to use mining planning software to put a dollar value on the amount of SP rock that could be obtained at particular locations.

These data, coupled with Mayer's modeling of CO2 uptake in mine wastes at the environmental and climate conditions of specific mine sites, could allow for comprehensive evaluation of CO2 fixation capacity and rate for individual mine sites around the world.

"None of this (work) is done in isolation," notes Hitch, adding that carbon management is not an easy solution. "It requires lots of different perspectives and lots of different skill sets," he says.

The safe storage of CO2 in mine waste and tailings for thousands of years is an exciting idea that could refresh the public image of the mining industry. One day, Hitch and his colleagues add, research findings from mining could even be applied to CO2 sequestration projects underground and in marine basins.

.


Related Links
Carbon Management Canada
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Landmark Chicago Buildings Leading The Way On Energy Efficiency
Chicago IL (SPX) Nov 20, 2012
Walking into Franklin Center, I immediately stood a little straighter. The high ceilings and skylight direct my attention upward while the marbled and gold-leaf trimmed lobby extending through the entire city block provided a sense of vastness and grandeur. So, my guess is that few people who visit Franklin Center ever think to themselves, "Boy, this building needs a retrofit." After all, ... read more


ENERGY TECH
Analyzing the cost of federal and other renewable energy subsidies in Texas

High Risk Investing - The New Trend in Energy

EC seeks to 'backload' emission allowances

US power grid vulnerable to terrorist attack: study

ENERGY TECH
Researchers tap into CO2 storage potential of mine waste

American DG Energy to Reduce Energy Costs and Carbon for Johns Hopkins University

Landmark Chicago Buildings Leading The Way On Energy Efficiency

Obama set to dive into South China Sea turmoil

ENERGY TECH
AREVA deploys its industrial plan to produce a 100 percent French wind power technology

Gannets could be affected by offshore energy developments

Scotland approves 85MW Highlands wind farm

China backs suit against Obama over wind farm deal

ENERGY TECH
Silicon Energy Announces Next Gen Solar Photovoltaics

Trina Solar offers certified Building Integrated PV solutions for residential and commercial roofs

Major advance in using sunlight to produce steam without boiling water

PROINSO donates PV products for PV-diesel hybrid energy system

ENERGY TECH
AREVA hosts second global Nuclear Executive Meeting with the world's leading utilities

Coastal Commission Denies PG and E Seismic Testing Permit

S. Korea to choose spent nuclear fuel storage sites

Myanmar to sign new nuclear safeguards: govt

ENERGY TECH
White rot fungus boosts ethanol production from corn stalks, cobs and leaves

14,000 Jobs Possible from Military Biofuels Initiative

Airbus, EADS and ENN make a push for new generation aviation fuels

A Better Route to Xylan

ENERGY TECH
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

ENERGY TECH
Greenhouse gases rise to record levels in 2011: UN

4-degrees briefing for the World Bank: The risks of a future without climate policy

CIA closes dedicated climate change unit

Indirect effects of climate change could alter landscapes




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement