Energy News  
ENERGY TECH
Researchers discover more efficient way to split water, produce hydrogen
by Staff Writers
Houston TX (SPX) Oct 04, 2016


Illustration shows procedures for growing ternary molybdenum sulfoselenide on the porous foam; b-c, images showing surface roughness of the nickel diselenide foam grown at 600 degrees C; d-e, morphologies of ternary molybdenum sulfoselenide particles on porous foam, grown at 500 degrees C. Image courtesy University of Houston. For a larger version of this image please go here.

Hydrogen is often considered a fuel for the future, in the form of fuel cells to power electric motors or burned in internal combustion engines. But finding a practical, inexpensive and nontoxic way to produce large amounts of hydrogen gas - especially by splitting water into its component parts, hydrogen and oxygen - has been a challenge.

A team of researchers from the University of Houston and the California Institute of Technology has reported a more efficient catalyst, using molybdenum sulfoselenide particles on three-dimensional porous nickel diselenide foam to increase catalytic activity.

The foam, made using commercially available nickel foam, significantly improved catalytic performance because it exposed more edge sites, where catalytic activity is higher than it is on flat surfaces, said Zhifeng Ren, MD Anderson Professor of physics at UH.

Ren is lead author of a paper in Nature Communications describing the discovery. Other researchers involved include Haiqing Zhou, Fang Yu, Jingying Sun, Ran He, Shuo Chen, Jiming Bao and Zhuan Zhu, all of UH, and Yufeng Huang, Robert J. Nielsen and William A. Goddard III of the California Institute of Technology.

"With the massive consumption of fossil fuels and its detrimental impact on the environment, methods of generating clean power are urgent," the researchers wrote. "Hydrogen is an ideal carrier for renewable energy; however, hydrogen generation is inefficient because of the lack of robust catalysts that are substantially cheaper than platinum."

Platinum catalysts have the highest efficiency rate for hydrogen evolution, said Ren, who also is a principal investigator at the Texas Center for Superconductivity. But platinum is rare, difficult to extract and too expensive for practical use, he said, and researchers continue to seek less expensive ways to split water into its component parts.

Currently, most hydrogen is produced through steam methane reforming and coal gasification; those methods raise the fuel's carbon footprint despite the fact that it burns cleanly.

Molybdenum sulfoselenide and similar layered compounds have shown promise as catalysts, but so far no one has boosted their performance to viable levels in bulk form. The researchers say most active catalysis on those layered compounds, known as layered transition-metal dichalcogenides, or LTMDs, takes place at the edges, making the idea of a substrate with a large number of exposed edges more desirable. Also, they wrote, "arranging two different materials into hybrids might lead to synergistic effects that utilize the best properties of each component."

Their hybrid catalyst is composed of molybdenum sulfoselenide particles with vertically aligned layers on a 3-D porous conductive nickel diselenide scaffold.

Testing determined that the hybrid catalyst required 69 millivolts from an external energy source to achieve a current density of 10 milliamps per square centimeter, which the researchers said is much better than many previously reported tests. In this case, the current "splits" the water, converting it to hydrogen at the cathode. Achieving the necessary current density with lower voltage improves energy conversion efficiency and reduces preparation costs.

A platinum catalyst required 32 millivolts in the testing, but Ren said ongoing testing has reduced the hybrid catalyst requirements to about 40 millivolts, close to the platinum requirements.

Equally important, he said, was the ability to increase current output at a faster rate than the increase in required energy input. The catalyst remained stable after 1,000 cycles at a constant current.

The work will continue as researchers focus on reducing required voltage.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Houston
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Closing in on high-temperature superconductivity
University Park PA (SPX) Sep 28, 2016
The quest to know the mysterious recipe for high-temperature superconductivity, which could enable revolutionary advances in technologies that make or use electricity, just took a big leap forward thanks to new research by an international team of experimental and theoretical physicists. The research paper appears in the journal Science on Sept. 16, 2016. The research is focused on reveali ... read more


ENERGY TECH
Europe ups energy security ante

NREL releases updated baseline of cost and performance data for electricity generation technologies

Chinese giant to buy Pakistani power company for $1.6 bn

Economy of energy-hungry India may face headwinds

ENERGY TECH
Closing in on high-temperature superconductivity

Corvus Energy selected to power new environmentally friendly UK hybrid ferry

Carbon-coated iron catalyst structure could lead to more-active fuel cells

Proton diffusion discovery a boost for fuel cell technologies

ENERGY TECH
SeaRoc launches SeaHub for communication and logistic data

U.S. governors want more offshore wind support

GM commits to 100 percent renewables

Experts anticipate significant continued reductions in wind energy costs

ENERGY TECH
Huawei Solar expands European supply center

Stacked Solar Module achieves unprecedented efficiency at 17.8 Percent

Canadian Solar Subsidiary Recurrent Energy Completes 200 Megawatt Tranquillity Solar Project

A cost-efficient compact hybrid system for solar-diesel microgrids

ENERGY TECH
Deal signed for giant UK nuclear project

South Africa's nuclear programme kicked into touch, again

UN trims nuclear power growth forecasts

AREVA and Synatom sign a contract for the manufacture of transport and storage casks

ENERGY TECH
New findings by Stanford chemists could lead to greener methanol production

Liquid Manure Volume Reduced by Half

Can jet fuel be grown on trees?

Boskalis tests sustainable wood-based biofuel for marine fleet

ENERGY TECH
Tiangong-2 space lab enters preset orbit for docking with manned spacecraft

Batch production of Long March 5 underway

Chinese Space Lab Tiangong-2 Ready to Dock With Manned Spacecraft

Scientific experiment apparatuses on Tiangong-2 put into operation

ENERGY TECH
Global warming set to pass 2C threshold in 2050: report

Earth's climate past points to overheated future: study

Pillar of Obama climate plan has its day in court

Caspian terns found breeding 1,000 miles farther north than previous record









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.