Pushing 'print' on large-scale piezoelectric materials by Staff Writers Melbourne, Australia (SPX) Sep 07, 2018
Researchers have developed a revolutionary method to 'print' large-scale sheets of two dimensional piezoelectric material, opening new opportunities for piezo-sensors and energy harvesting. Importantly, the inexpensive process allows the integration of piezoelectric components directly onto silicon chips. Until now, no 2D piezoelectric material has been manufactured in large sheets, making it impossible to integrate into silicon chips or use in large-scale surface manufacturing. This limitation meant that piezo accelerometer devices - such as vehicle air bag triggers or the devices that recognise orientation changes in mobile phones - have required separate, expensive components to be embedded onto silicon substrates, adding significant manufacturing costs. Now, FLEET researchers at RMIT University in Melbourne have demonstrated a method to produce large-scale 2D gallium phosphate sheets, allowing this material to be formed at large scales in low-cost, low-temperature manufacturing processes onto silicon substrates, or any other surface. Gallium phosphate (GaPO4) is an important piezoelectric material commonly used in pressure sensors and microgram-scale mass measurement, particularly in high temperatures or other harsh environments. "As so often in science, this work builds on past successes," lead researcher Professor Kourosh Kalantar-zadeh explains. "We adopted the liquid-metal material deposition technique we developed recently to create 2D films of GaPO4 through an easy, two-step process." Professor Kalantar-zadeh, now Professor of Chemical Engineering at UNSW, led the team that developed the new method while Professor of Electronic Engineering at RMIT University. The work was materialised as a result of significant contribution from RMIT's Dr Torben Daeneke and extreme persistence and focus shown by the first author of the work, PhD researcher Nitu Syed. The revolutionary new method allows easy, inexpensive growth of large-area (several centimetres), wide-bandgap, 2D GaPO4 nanosheets of unit cell thickness. It is the first demonstration of strong, out-of-plane piezoelectricity of the popular piezoelectric material.
FeCo-selenide as a next-generation material for energy storage devices Washington DC (SPX) Sep 04, 2018 In a paper to be published in the forthcoming issue of NANO, a team of researchers from the China University of Mining and Technology have fabricated an asymmetric supercapacitor (ASC) based on FeCo-selenide nanosheet arrays as positive electrode and Fe2O3 nanorod arrays as negative electrode. There is evidence that FeCo-selenide could be the next-generation promising electrode materials in energy storage devices. Supercapacitors have been considered as the most attractive candidate for energy sto ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |