Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
Physicists unlock nature of high-temperature superconductivity
by Staff Writers
Chicago IL (SPX) Jul 29, 2014


This is UIC physicist Dirk Morr, who worked with researchers at Brookhaven National Laboratory, says the findings were the result of 'the close collaboration of theory and experiment.' Image courtesy Roberta Dupuis-Devlin/UIC Photo Services.

Physicists have identified the "quantum glue" that underlies a promising type of superconductivity -- a crucial step towards the creation of energy superhighways that conduct electricity without current loss.

The research, published online in the Proceedings of the National Academy of Sciences, is a collaboration between theoretical physicists led by Dirk Morr, professor of physics at the University of Illinois at Chicago, and experimentalists led by Seamus J.C. Davis of Cornell University and Brookhaven National Laboratory.

The earliest superconducting materials required operating temperatures near absolute zero, or -459.67 degrees Fahrenheit. Newer unconventional or "high-temperature" superconductors function at slightly elevated temperatures and seemed to work differently from the first materials.

Scientists hoped this difference hinted at the possibility of superconductors that could work at room temperature and be used to create energy superhighways.

Superconductivity arises when two electrons in a material become bound together, forming what is called a Cooper pair. Groundbreaking experiments performed by Freek Massee and Milan Allan in Davis's group were analyzed using a new theoretical framework developed at UIC by Morr and graduate student John Van Dyke, who is first author on the report.

Their results pointed to magnetism as the force underlying the superconductivity in an unconventional superconductor consisting of cerium, cobalt and indium, with the molecular formula CeCoIn5.

"For a long time, we were unable to develop a detailed theoretical understanding of this unconventional superconductor," said Morr, who is principal investigator on the study. Two crucial insights into the complex electronic structure of CeCoIn5 were missing, he said: the relation between the momentum and energy of electrons moving through the material, and the 'quantum glue' that binds the electrons into a Cooper pair.

Those questions were answered after the Davis group developed high-precision measurements of CeCoIn5 using a scanning tunneling spectroscopy technique called quasi-particle interference spectroscopy. Analysis of the spectra using a novel theoretical framework developed by Morr and Van Dyke allowed the researchers to extract the missing pieces of the puzzle.

The new insight allowed them to explore the 30-year-old hypothesis that the quantum glue of superconductivity is the magnetic force.

Magnetism is highly directional, Morr said.

"Knowing the directional dependence of the quantum glue, we were able, for the first time, to quantitatively predict the material's superconducting properties using a series of mathematical equations," he said.

"Our calculations showed that the gap possesses what's called a d-wave symmetry, implying that for certain directions the electrons were bound together very strongly, while they were not bound at all for other directions," Morr said. Directional dependence is one of the hallmarks of unconventional superconductors.

"We concluded that magnetism is the quantum glue underlying the emergence of unconventional superconductivity in CeCoIn5."

The finding has "lifted the fog of complexity" surrounding the material, Morr said, and was only made possible by "the close collaboration of theory and experiment, which is so crucial in advancing our understanding of complex systems."

"We now have an excellent starting point to explore how superconductivity works in other complex material," Morr said. "With a working theory, we can now investigate how we have to tweak the system to raise the critical temperature -- ideally, all the way up to room temperature."

.


Related Links
University of Illinois at Chicago
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Rutgers Chemists Develop Clean-Burning Hydrogen Fuel
New Brunswick NJ (SPX) Jul 15, 2014
Rutgers researchers have developed a technology that could overcome a major cost barrier to make clean-burning hydrogen fuel - a fuel that could replace expensive and environmentally harmful fossil fuels. The new technology is a novel catalyst that performs almost as well as cost-prohibitive platinum for so-called electrolysis reactions, which use electric currents to split water molecules ... read more


ENERGY TECH
EU sets new energy savings target at 30%

Canada lobs economic shot across Russian energy bow

U.S. ranks 13th among 16 economies in energy efficiency

Germany most energy efficient nation: study

ENERGY TECH
Improving the cost and efficiency of renewable energy storage

Rutgers Chemists Develop Clean-Burning Hydrogen Fuel

3-D nanostructure could benefit gas storage

Labs characterize carbon for batteries

ENERGY TECH
Portuguese consortium to spend $300 million on wind

Fires are a major cause of wind farm failure

Marine life thrives around offshore wind farms

DNV GL Increase Quality Of Rotor Blades Made In China

ENERGY TECH
Juwi Sells Vermont Plant To PSEG Solar Source

Self-cooling solar cells boost power, last longer

Suniva Announces Second US Facility

Rwanda to Unveil First Utility-Scale Solar PV Power Plant in East Africa

ENERGY TECH
Japanese get anti-radiation pills ahead of nuclear restart

China, Canada to build two nuclear reactors in Romania

Fukushima Accident Underscores Need to Act on Nuclear Plant Hazards

A noble gas cage

ENERGY TECH
Spinach could lead to alternative energy more powerful than Popeye

Biofuels benefit energy security, Secretary Moniz says

German laws make biogas a bad bet, RWE Innogy says

U.S. looking for ways to make biofuels cheaper

ENERGY TECH
China to launch HD observation satellite this year

Lunar rock collisions behind Yutu damage

China's Fast Track To Circumlunar Mission

Chinese moon rover designer shooting for Mars

ENERGY TECH
Size and age of plants impact their productivity more than climate

Global warming 'pause' reflects natural fluctuation

Pew poll suggests U.S. leads the world in climate change denial

Are Ants the Answer to CO2 Sequestration?




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.