Energy News  
ENERGY TECH
Physicists spell 'AV' by manipulating Abrikosov vortices
by Staff Writers
Moscow, Russia (SPX) Nov 29, 2016


The randomly distributed vortices in the superconducting sample (left) have been re-positioned into a pattern forming the letters "AV" which stands for Abrikosov vortices (right). Image courtesy MIPT's Press Office. For a larger version of this image please go here.

A nanophotonics group lead by Prof. Brahim Lounis of the University of Bordeaux and including scientists from MIPT has performed a unique experiment involving the optical manipulation of individual Abrikosov vortices in a superconductor. In their article published in Nature Communications, the scientists mention the possibility of designing new logic units based on quantum principles for use in supercomputers.

The phenomenon of superconductivity, or zero electrical resistance, occurs in certain materials in the temperature range from -273 to -70 degrees Celsius. When a material transitions into the superconducting state, the magnetic flux fields are expelled from its volume. A superconductor either has all magnetic field lines ejected from its interior or allows partial penetration of the magnetic field.

The phenomenon of partial penetration was explained in 1957 by Alexei Abrikosov, for which he was awarded the 2003 Nobel Prize in Physics. A material that does not exhibit complete magnetic field expulsion is referred to as a type-II superconductor.

Abrikosov also demonstrated that these superconductors can only be penetrated by discrete magnetic flux units: one magnetic flux quantum at a time. As the field within a superconductor grows stronger, this gives rise to the cylindrical current loops known as Abrikosov vortices.

"Type-II superconductors are used everywhere: from medicine to energetics and other industries. Their properties are determined by the 'vortex matter,' which makes research into vortices and finding ways to manipulate them very important for modern physics," says Ivan Veshchunov, one of the authors of the study and a researcher at the Laboratory of Topological Quantum Phenomena in Superconducting Systems at MIPT.

To manipulate Abrikosov vortices, the scientists used a focused laser beam. This kind of optical vortex control is made possible by the tendency of the vortices to be attracted toward the higher-temperature regions in a superconductor (in this case, a niobium film cooled to -268 degrees Celsius).

The necessary hotspots can be created by heating the material with a laser. However, it is crucial to set the right laser power, as overheating the material destroys its superconducting properties.

Because the vortices act as magnetic flux quanta, they can be used to shape the overall magnetic flux profile, enabling physicists to perform various experiments with superconductors. While a triangular vortex lattice occurs naturally in certain magnetic fields, other types of lattices (and devices like vortex lenses) can be created by moving vortices around.

According to the authors of the study, their proposed method of vortex manipulation could be used in quantum computation to open up an entirely new field of research devoted to the development of optically controlled rapid single flux quantum (RSFQ) logic elements. This technology is seen as the most promising in terms of the design of superfast memory for quantum computers.

RSFQ-based logic elements are already used in digital-to-analog and analog-to-digital converters, high-precision magnetometers, and memory cells. A number of prototype computers based on this technology have been developed including the FLUX-1 designed by a team of US engineers. However, the RSFQ logic elements in these computers are mostly controlled by electrical impulses. Optically controlled logic is one of the emerging trends in superconducting systems.

The experiments performed by the scientists serve as a proof of concept for an approach that could be used in future research into Abrikosov vortices. Physicists have yet to investigate the details of how increased temperature acts to "unpin" the vortices from their sites and bring them into motion.

More research into vortex dynamics in Abrikosov lattices is likely to follow. This line of research is critical for our understanding of the physics of superconductors, as well as assessing the prospects for fundamentally new types of microelectronics components.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Moscow Institute of Physics and Technology
Powering The World in the 21st Century at Energy-Daily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Researchers report new thermoelectric material with high power factors
Houston TX (SPX) Nov 17, 2016
With energy conservation expected to play a growing role in managing global demand, materials and methods that make better use of existing sources of energy have become increasingly important. Researchers reported this week in the Proceedings of the National Academy of Sciences that they have demonstrated a step forward in converting waste heat - from industrial smokestacks, power generating pla ... read more


ENERGY TECH
China power plant collapse kills at least 22: Xinhua

Climate: Four nations map course to carbon-free economies

Study: LED lights draw fewer insects

Shifting focus leaves mixed bag for German utility RWE

ENERGY TECH
Glow-in-the-dark dye could fuel liquid-based batteries

Researchers report new thermoelectric material with high power factors

EAST achieves longest steady-state H-mode pperations

First observations of tongue deformation of plasma

ENERGY TECH
Owl-inspired wing design reduces wind turbine noise by 10 decibels

DONG Energy sets wind energy sights on Taiwan

Interior set to rule on future of BLM's Renewable Energy Program

Microsoft Corp. taps deeper into wind power

ENERGY TECH
Tesla microgrid powers entire island with solar in American Samoa

Africa looks to solar for communities off the grid

Sweden to scrap taxes on solar energy in 2017

Tesla shareholders approve merger with SolarCity

ENERGY TECH
Swiss reject speedy nuclear phaseout

Nuclear energy: who's advancing and who's retreating

Breakthrough offers greater understanding of safe radioactive waste disposal

Vietnam scraps huge nuclear power plant projects

ENERGY TECH
Investing in the 'bioeconomy' could create jobs and reduce carbon emissions

Argonne researchers study how reflectivity of biofuel crops impacts climate

UNIST researchers turn waste gas into road-ready diesel fuel

NextCoal to produce bio-coal for export to Japan, bio-oil for domestic use

ENERGY TECH
Material and plant samples retrieved from space experiments

Chinese astronauts return to earth after longest mission

China completes longest manned space mission yet

Chinese astronauts accept 1st earth-space interview

ENERGY TECH
Overheated Arctic sign of climate change 'vicious circle'

Deciphering Trump's mixed signals on climate change

The decline in emissions also has negative implications

Current climate date rescue activities in Australia









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.