Energy News  
ENERGY TECH
Optimal magnetic fields for suppressing instabilities in tokamaks
by Staff Writers
Princeton NJ (SPX) Sep 11, 2018

File illustration of a tokamak fusion reactor.

Fusion, the power that drives the sun and stars, produces massive amounts of energy. Scientists here on Earth seek to replicate this process, which merges light elements in the form of hot, charged plasma composed of free electrons and atomic nuclei, to create a virtually inexhaustible supply of power to generate electricity in what may be called a "star in a jar."

A long-time puzzle in the effort to capture the power of fusion on Earth is how to lessen or eliminate a common instability that occurs in the plasma called edge localized modes (ELMs).

Just as the sun releases enormous bursts of energy in the form of solar flares, so flare-like bursts of ELMs can slam into the walls of doughnut-shaped tokamaks that house fusion reactions, potentially damaging the walls of the reactor.

Ripples control new bursts
To control these bursts, scientists disturb the plasma with small magnetic ripples called resonant magnetic perturbations (RMPs) that distort the smooth, doughnut shape of the plasma - releasing excess pressure that lessens or prevents ELMs from occurring. The hard part is producing just the right amount of this 3D distortion to eliminate the ELMs without triggering other instabilities and releasing too much energy that, in the worst case, can lead to a major disruption that terminates the plasma.

Making the task exceptionally difficult is the fact that a virtually limitless number of magnetic distortions can be applied to the plasma, causing finding precisely the right kind of distortion to be an extraordinary challenge. But no longer.

Physicist Jong-Kyu Park of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), working with a team of collaborators from the United States and the National Fusion Research Institute (NFRI) in Korea, have successfully predicted the entire set of beneficial 3D distortions for controlling ELMs without creating more problems. Researchers validated these predictions on the Korean Superconducting Tokamak Advanced Research (KSTAR) facility, one of the world's most advanced superconducting tokamaks, located in Daejeon, South Korea.

KSTAR ideal for tests
KSTAR was ideal for testing the predictions because of its advanced magnet controls for generating precise distortions in the near-perfect, doughnut-shaped symmetry of the plasma. Identifying the most beneficial distortions, which amount to less than one percent of all the possible distortions that could be produced inside KSTAR, would have been virtually impossible without the predictive model developed by the research team.

The result was a precedent-setting achievement. "We show for the first time the full 3D field operating window in a tokamak to suppress ELMs without stirring up core instabilities or excessively degrading confinement," said Park, whose paper - written with 14 coauthors from the United States and South Korea - is published in Nature Physics. "For a long time we thought it would be too computationally difficult to identify all beneficial symmetry-breaking fields, but our work now demonstrates a simple procedure to identify the set of all such configurations."

Researchers reduced the complexity of the calculations when they realized that the number of ways the plasma can distort is actually far fewer than the range of possible 3D fields that can be applied to the plasma. By working backwards, from distortions to 3D fields, the authors calculated the most effective fields for eliminating ELMs. The KSTAR experiments confirmed the predictions with remarkable accuracy.

Findings provide new confidence
The findings on KSTAR provide new confidence in the ability to predict optimal 3D fields for ITER, the international tokamak under construction in France, which plans to employ special magnets to produce 3D distortions to control ELMs. Such control will be vital for ITER, whose goal is to produce 10 times more energy than it will take to heat the plasma. Said authors of the paper, "the method and principle adopted in this study can substantially improve the efficiency and fidelity of the complicated 3D optimizing process in tokamaks."

Research paper


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Scientists tame damaging plasma instabilities in fusion facilities
Plainsboro NJ (SPX) Aug 23, 2018
Before scientists can capture and recreate the fusion process that powers the sun and stars to produce virtually limitless energy on Earth, they must first learn to control the hot plasma gas that fuels fusion reactions. In a set of recent experiments, scientists have tamed a plasma instability in a way that could lead to the efficient and steady state operation of ITER, the international experiment under construction in France to demonstrate the feasibility of fusion power. Such continuous operat ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Electricity crisis leaves Iraqis gasping for cool air

Energy-intensive Bitcoin transactions pose a growing environmental threat

Germany thwarts China by taking stake in 50Hertz power firm

Global quadrupling of cooling appliances to 14 billion by 2050

ENERGY TECH
Not too wet, not too dry: plasma-treated fuel cell gets it just right

Pushing 'print' on large-scale piezoelectric materials

Cathode fabrication for oxide solid-state batteries at room temperature

New technology improves hydrogen manufacturing

ENERGY TECH
Wind Power: It is all about the distribution

Big wind, solar farms could boost rain in Sahara

DNV GL supports creation of China's first HVDC offshore wind substation

China pushes wind energy efforts further offshore

ENERGY TECH
Changing the type of silicon etching drops solar power costs by more than 10 percent

California commits to 100% clean electricity by 2045

Golden sandwich could make the world more sustainable

Renewable energy sources: All-in-one light-driven water splitting

ENERGY TECH
Nuclear energy may see role wane, UN agency says

MIT Energy Initiative study reports on the future of nuclear energy

Austria to appeal EU court ruling on UK nuclear plant

S.Africa drops Zuma's nuclear expansion dreams

ENERGY TECH
Methane to syngas catalyst: two for the price of one

Biodegradable plastic blends offer new options for disposal

Breakthrough could see bacteria used as cell factories to produce biofuels

Serendipitous discovery by IUPUI researchers may lead to eco-friendly lubricant

ENERGY TECH
Court scraps multibillion-dollar Ecuador damages against Chevron

Oil prices down after Pompeo outlines plan to get nations off Iranian oil

Oil prices down, OPEC production at 10-month high

Gulf, US commanders to hold talks in Kuwait

ENERGY TECH
Episodic and intense rain caused by ancient global warming

'Hunger stones' tell Elbe's centuries-old tale of drought

Conflict hinders Iran efforts to counter dust storms

Prehistoric changes in vegetation help predict future of Earth's ecosystems









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.