Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
ORNL microscopy system delivers real-time view of battery electrochemistry
by Staff Writers
Oak Ridge TN (SPX) Feb 23, 2014


A new in situ transmission electron microscopy technique enabled ORNL researchers to image the snowflake-like growth of the solid electrolyte interphase from a working battery electrode. For a larger version of this image please go here.

Using a new microscopy method, researchers at the Department of Energy's Oak Ridge National Laboratory can image and measure electrochemical processes in batteries in real time and at nanoscale resolution.

Scientists at ORNL used a miniature electrochemical liquid cell that is placed in a transmission electron microscope to study an enigmatic phenomenon in lithium-ion batteries called the solid electrolyte interphase, or SEI, as described in a study published in Chemical Communications.

The SEI is a nanometer-scale film that forms on a battery's negative electrode due to electrolyte decomposition. Scientists agree that the SEI's formation and stability play key roles in controlling battery functionality.

But after three decades of research in the battery field, details of the SEI's dynamics, structure and chemistry during electrochemical cycling are still debated, stemming from inherent difficulties in studying battery electrode materials in their native liquid environment.

"We've used this novel in situ method to understand the dynamics of how this layer forms and evolves during battery operation," said Raymond Unocic, ORNL R and D staff scientist.

Battery researchers typically study the structure and chemistry of the SEI through "post-mortem" methods, in which a cycled battery is disassembled, dried and then analyzed through a number of characterization methods.

"This is problematic because of the air and moisture sensitivity of the SEI, and the ease by which environmental exposure can modify its structure and chemistry." Unocic said.

The ORNL researchers formed a miniature electrochemical cell by enclosing battery electrolyte between two silicon microchip devices that contain microfabricated electrodes and silicon nitride viewing membranes.

The transparent "windows" seal the highly volatile battery electrolyte from the microscope's vacuum environment and allow the electron beam to pass through the liquid, which facilitates imaging of the electrochemical reaction products as they form.

To reproduce a battery charging cycle, the researchers applied a potential at the working electrode and monitored the resulting changes in current. The most striking result, said the researchers, was capturing an unprecedented view of SEI evolution during potential cycling. The technique is able to image the formation of tiny crystalline particles only one billionth of a meter in size.

"As we start to sweep the potential, we didn't initially observe anything," said lead author Robert Sacci, a postdoctoral research fellow with ORNL's FIRST Energy Frontier Research Center. "Then we started seeing shadows -- presumably polymeric SEI -- forming into a dendritic pattern. It looks like a snowflake forming from the electrode."

The researchers plan to build on this initial proof-of-principle study to better understand the factors behind the SEI's formation, which could ultimately help improve battery performance, capacity, and safety at the device level.

"Tailoring the SEI's structure and chemistry to maximize battery capabilities appears to be a delicate balancing act," Unocic said.

"When you cycle a real battery, the interphase structure can form, break, and reform again, depending on how thick the layer grows, so we need to look at improving its structural stability. But at the same time, we have to think about making the interphase more efficient for lithium ion transport. This study brings us one step closer to understanding SEI formation and growth."

Next steps for the researchers include applying their technique to study different types of battery electrodes and electrolytes and other energy storage systems including fuel cells and supercapacitors.

Coauthors are ORNL's Raymond Unocic, Robert Sacci, Nancy Dudney and Karren More; and Pacific Northwest National Laboratory's Lucas Parent, Ilke Arslan, Nigel Browning. The study is published as "Direct Visualization of Initial SEI Morphology and Growth Kinetics During Lithium Deposition by in situ Electrochemical Transmission Electron Microscopy."

.


Related Links
Oak Ridge National Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
A battery small enough to be injected, energetic enough to track salmon
Richland WA (SPX) Feb 23, 2014
Scientists have created a microbattery that packs twice the energy compared to current microbatteries used to monitor the movements of salmon through rivers in the Pacific Northwest and around the world. The battery, a cylinder just slightly larger than a long grain of rice, is certainly not the world's smallest battery, as engineers have created batteries far tinier than the width of a hu ... read more


ENERGY TECH
US Supreme Court to weigh emissions rule

French 'red caps' clash with police in protest over eco-tax

Obama calls for new truck fuel standards

Amidst bitter cold and rising energy costs, new concerns about energy insecurity

ENERGY TECH
ORNL microscopy system delivers real-time view of battery electrochemistry

Advance in energy storage could speed up development of next-gen electronics

Kinetic battery chargers get a boost

A battery small enough to be injected, energetic enough to track salmon

ENERGY TECH
New research blows away claims that aging wind farms are a bad investment

Oil-rich Brazil aims high with wind-power targets

Britain wind farm proposal scaled back in face of opposition

Climate risk from wind farms is minimal: study

ENERGY TECH
Sun shines on New York solar energy boom

Artificial leaf jumps developmental hurdle

Solar-induced hybrid fuel cell produces electricity directly from biomass

Australia to investigate renewable energy target

ENERGY TECH
Georgia nuclear plant gets federal loan guarantees

Iran seeks new Russia reactor in exchange for oil

Fukushima should eye 'controlled discharges' in sea: IAEA

Japan to abandon troubled fast breeder reactor: report

ENERGY TECH
Pond-dwelling powerhouse's genome points to its biofuel potential

Sustainable use of energy wood resources shows potential in North-West Russia

Italian farmers hail coming of biomethane production incentives

UK failing to harness its bioenergy potential

ENERGY TECH
No Call for Yutu

What's up, Yutu

China's Jade Rabbit rover comes 'back to life'

Yutu Awakes

ENERGY TECH
Finding common ground fosters understanding of climate change

Kerry warns of bleak future in call to arms on climate change

US, China to share policy ideas to fight global warming

New maps reveal locations of species at risk as climate changes




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.