Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
No more leakage of explosive electrolyte in battery
by Staff Writers
Ulsan, South Korea (SPX) Jul 02, 2013


The research team of Profs. Hyun-Kon Song and Noejung Park of UNIST, presented an organogel polymer electrolyte characterized by a high liquid-electrolyte-level ionic conductivity with high a cationic transference number for Lithium ion batteries (LIB).

A research team at Ulsan National Institute of Science and Technology (UNIST), S. Korea, found a new physical organogel electrolyte with two unique characteristics: an irreversible thermal gelation and a high value of the Li+ transference number.

A Recent fire on a Boeing 787 on the ground in Boston, US, was caused by a battery failure, it resulted in the release of flammable electrolytes, heat damage and smoke. If they had used a safer electrolyte, the risk would have been reduced.

Electrolytes are essential components of supercapacitors, batteries and fuel cells. The Most widely used electrolyte is a liquid type since its overall ionic conductivity and value of transference numbers are better than solid-type electrolytes. However, safety concerns caused by its leakage and explosive nature, caused an extensive call for the research on the development of solid-type electrolyte.

The development of solid-type electrolytes, safe from explosion caused by high temperature and overcharge, is urgently needed to replace the liquid electrolytes. The solid electrolyte enables batteries to be safer as well as the use of higher energy electrode materials.

The most important parameter of electrolytes used in electrochemical cells is ionic conductivity. The use of solid-state electrolytes has been limited due to low ionic conductivity caused by their immobile matrix regardless of their own merits such as no leak, non-volatility, mechanical strength and processing flexibility.

Another parameter we should consider is transference of the number of ions. Electrolytes are characterized by their ionic conductivity, It is desirable that overall ionic results from the dominant contribution of the ions of interest. However high values of the cationic transference number achieved by solid or gel electrolytes have resulted in low ionic conductivity leading to inferior cell performances.

The research team of Profs. Hyun-Kon Song and Noejung Park of UNIST, presented an organogel polymer electrolyte characterized by a high liquid-electrolyte-level ionic conductivity with high a cationic transference number for Lithium ion batteries (LIB).

The research team acquired the two required properties simultaneously in polymer gel electrolytes: a liquid-electrolyte-level conductivity with a high transference number. Cyanoethly polyvinyle alchohol (PVA-CN) played a key role in the highly conductive gel electrolyte while another cyano resin, Cyanoethlyle pullulan (Pullulan-CN), was used as a control representing a liquid electrolyte containing cyano chains. The PVA-CN-containing liquid electrolyte was thermally gelated even without any chemical crosslinkers or polymerizations initiators.

Hyun-Kon Song and Noejung Park, both, professors of the Interdisciplinary School of Green Energy, UNIST, South Korea, led the effort. Fellow authors include: Young-Soo Kim, Yoon-Gyo Cho, and Dori Odkhuu from UNIST.

"We believe that this new type of electrolyte gel provides us with design flexibility in devices as well as enhanced safety and stability to electro-chemical devices," said Prof. Song.

This research was funded by the World Class University (WCU) programs through the National Research Foundation of Korea (NRF) and published on May 29, 2013 in the (Nature Publishing Group) Scientific Reports. (Title: A Physical organogel electrolyte: characterized by in situ thermo-irreversible gelation and single-ion-predominent conduction, DOI: 10.1038/srep01917) The original research article can be found here

.


Related Links
Ulsan National Institute of Science and Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Efficient and inexpensive: Researchers develop catalyst material for fuel cells
Berlin, Germany (SPX) Jun 21, 2013
Efficient, robust and economic catalyst materials hold the key to achieving a breakthrough in fuel cell technology. Scientists from Julich and Berlin have developed a material for converting hydrogen and oxygen to water using a tenth of the typical amount of platinum that was previously required. With the aid of state-of-the-art electron microscopy, the researchers discovered that the func ... read more


ENERGY TECH
Remote Norway islands added to national electric grid after blackout

Outside View: Obama's climate action plan masks hidden agenda

Extreme Energy, Extreme Implications: Interview with Michael Klare

Energy Companies Pull a Blackwater

ENERGY TECH
Exotic alloys for potential energy applications

Power for seaports may be the next job for hydrogen fuel cells

No more leakage of explosive electrolyte in battery

Petrocaribe weighs Venezuela's post-Chavez oil diplomacy

ENERGY TECH
Next step on King Island wind power project welcomed

Chile expands wind power resources

Policy issues plague hydropower as wind power backup

Renewable energy use gaining worldwide: IEA

ENERGY TECH
Thinner And Lighter PV From MIT

Sungrow After Its Share Of The US Inverter Market

KYOCERA and PV Systems Bring Solar Energy to Central Waters

Carnegie Mellon Researchers Find Wind and Solar Power Have Greatest Health and Climate Benefits in Eastern States

ENERGY TECH
Small fire at Japan crippled nuclear plant: TEPCO

Westinghouse Lauds Efforts Of US Government In Support Of New Nuclear Construction In India

Fukushima operator to ask for OK on reactor restarts

Japan gets first MOX nuclear shipment since Fukushima

ENERGY TECH
High-octane bacteria could ease pain at the pump

Novel Enzyme from Tiny Gribble Could Prove a Boon for Biofuels Research

A cheaper drive to 'cool' fuels

When green algae run out of air

ENERGY TECH
China plans to launch Tiangong-2 space lab around 2015

Twilight for Tiangong

China calls for international cooperation in manned space program

Shenzhou 10 Returns Safely To Earth

ENERGY TECH
Pakistan to miss out on climate change funding?

Researchers discover global warming may affect microbe survival

Obama says US can lead climate change battle

Australia to forge ahead on climate change?




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement