Subscribe free to our newsletters via your
. Energy News .




ENERGY TECH
New spin on old method to develop more efficient electronics
by Staff Writers
Pittsburgh PA (SPX) Jul 03, 2012


File image.

With the advent of semiconductor transistors-invented in 1947 as a replacement for bulky and inefficient vacuum tubes-has come the consistent demand for faster, more energy-efficient technologies. To fill this need, researchers at the University of Pittsburgh are proposing a new spin on an old method: a switch from the use of silicon electronics back to vacuums as a medium for electron transport-exhibiting a significant paradigm shift in electronics.

Their findings were published online in Nature Nanotechnology.

For the past 40 years, the number of transistors placed on integrated circuit boards in devices like computers and smartphones has doubled every two years, producing faster and more efficient machines. This doubling effect, commonly known as "Moore's Law," occurred by scientists' ability to continually shrink the transistor size, thus producing computer chips with all-around better performance.

However, as transistor sizes have approached lower nanometer scales, it's become increasingly difficult and expensive to extend Moore's Law further.

"Physical barriers are blocking scientists from achieving more efficient electronics," said Hong Koo Kim, principal investigator on the project and Bell of Pennsylvania/Bell Atlantic Professor in the University of Pittsburgh's Swanson School of Engineering.

"We worked toward solving that road block by investigating transistors and its predecessor-the vacuum."

The ultimate limit of transistor speed, says Kim, is determined by the "electron transit time," or the time it takes an electron to travel from one device to the other. Electrons traveling inside a semiconductor device frequently experience collisions or scattering in the solid-state medium. Kim likens this to driving a vehicle on a bumpy road-cars cannot speed up very much. Likewise, the electron energy needed to produce faster electronics is hindered.

"The best way to avoid this scattering-or traffic jam-would be to use no medium at all, like vacuum or the air in a nanometer scale space," said Kim. "Think of it as an airplane in the sky creating an unobstructed journey to its destination."

However, says Kim, conventional vacuum electronic devices require high voltage, and they aren't compatible with many applications. Therefore, his team decided to redesign the structure of the vacuum electronic device altogether.

With the assistance of Siwapon Srisonphan, a Pitt PhD candidate, and Yun Suk Jung, a Pitt postdoctoral fellow in electrical and computer engineering, Kim and his team discovered that electrons trapped inside a semiconductor at the interface with an oxide or metal layer can be easily extracted out into the air. The electrons harbored at the interface form a sheet of charges, called two-dimensional electron gas.

Kim found that the Coulombic repulsion-the interaction between electrically charged particles-in the electron layer enables the easy emission of electrons out of silicon. The team extracted electrons from the silicon structure efficiently by applying a negligible amount of voltage and then placed them in the air, allowing them to travel ballistically in a nanometer-scale channel without any collisions or scattering.

"The emission of this electron system into vacuum channels could enable a new class of low-power, high-speed transistors, and it's also compatible with current silicon electronics, complementing those electronics by adding new functions that are faster and more energy efficient due to the low voltage," said Kim.

With this finding, he says, there is the potential for the vacuum transistor concept to come back, but in a fundamentally different and improved way.

.


Related Links
University of Pittsburgh
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Auriga Laser: Innovative Combination of FIB/SEM Technology with Laser Ablation for Fast Sample Preparation
Jena, Germany (SPX) Jul 02, 2012
Carl Zeiss has launched the AURIGA Laser, a new advanced system combining the specific advantages of the AURIGA CrossBeam (FIB-SEM) workstation with the capabilities of a pulsed micro-focus laser for fast ablation of material. AURIGA Laser is particularly useful for the examination of samples where the target structure is deeply buried under material layers. To gain access to the target st ... read more


ENERGY TECH
Swiss firm wins $120m power station contract in Iraq

New clean energy bank to turbo-charge investment

AREVA inaugurates the world's first hydrogen backup power system for Data Centers

Hottest man-made temperature achieved

ENERGY TECH
New spin on old method to develop more efficient electronics

New fuel cell keeps going after the hydrogen runs out

US hails EU embargo on Iran oil

China sends patrol ships to disputed waters: Xinhua

ENERGY TECH
Opponents force Wales wind farm hearings

Toward super-size wind turbines: Bigger wind turbines do make greener electricity

Study: Bigger wind turbines are greener

US wind industry gains major new supporters for Production Tax Credit campaign

ENERGY TECH
Nexus EnergyHomes To Build Philadelphia's First Net-Zero Residences

Japan opens solar energy parks

Hudson Energy Solar partners with Delaware Valley Friends School

Spot Market Prices for Solar Polysilicon Decline Again in May

ENERGY TECH
Japan readies nuclear reactor as protests mount

Japan restarts nuclear reactor as protests mount

French, US, Russian firms bid on Czech nuke plant

Tens of thousands protest Japan nuclear restart

ENERGY TECH
Denmark can triple its biomass production and improve the environment

Researchers tap into genetic reservoir of heat-loving bacteria

Prairie cordgrass: Highly underrated

New loo turns poo into power

ENERGY TECH
China open to cooperation

China set to launch bigger space program

Nation has long way to go as space power

An inspiring mission

ENERGY TECH
With heatwave pounding US, libraries become cool again

S.Africa gripped by 'fear of missing out' epidemic: study

Australia counts down to pollution, mining taxes

2 warmest winter months in Midwest history may have connection




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement