New method could open path to hydrogen economy by Staff Writers Pullman WA (SPX) Feb 15, 2018
Washington State University researchers have found a way to more efficiently generate hydrogen from water - an important key to making clean energy more viable. Using inexpensive nickel and iron, the researchers developed a very simple, five-minute method to create large amounts of a high-quality catalyst required for the chemical reaction to split water. They describe their method in the February issue of the journal Nano Energy. Energy conversion and storage is a key to the clean energy economy. Because solar and wind sources produce power only intermittently, there is a critical need for ways to store and save the electricity they create. One of the most promising ideas for storing renewable energy is to use the excess electricity generated from renewables to split water into oxygen and hydrogen. Hydrogen has myriad uses in industry and could be used to power hydrogen fuel-cell cars. Industries have not widely used the water splitting process, however, because of the prohibitive cost of the precious metal catalysts that are required - usually platinum or ruthenium. Many of the methods to split water also require too much energy, or the required catalyst materials break down too quickly. In their work, the researchers, led by professor Yuehe Lin in the School of Mechanical and Materials Engineering, used two abundantly available and cheap metals to create a porous nanofoam that worked better than most catalysts that currently are used, including those made from the precious metals. The catalyst they created looks like a tiny sponge. With its unique atomic structure and many exposed surfaces throughout the material, the nanofoam can catalyze the important reaction with less energy than other catalysts. The catalyst showed very little loss in activity in a 12-hour stability test. "We took a very simple approach that could be used easily in large-scale production," said Shaofang Fu, a WSU Ph.D. student who synthesized the catalyst and did most of the activity testing. The WSU researchers collaborated on the project with researchers at Advanced Photon Source at Argonne National Laboratory and Pacific Northwest National Laboratory. "The advanced materials characterization facility at the national laboratories provided the deep understanding of the composition and structures of the catalysts," said Junhua Song, another WSU Ph.D. student who worked on the catalyst characterization. The researchers are now seeking additional support to scale up their work for large-scale testing. "This is just lab-scale testing, but this is very promising," said Lin.
Powerful LED-based train headlight optimized for energy savings Washington DC (SPX) Feb 14, 2018 Researchers have designed a new LED-based train headlight that uses a tenth of the energy required for headlights using conventional light sources. If operated 8 hours every day, the electricity savings of the new design would reduce emissions of the greenhouse gas carbon dioxide by about 152 kilograms per year. Train headlights not only illuminate the tracks ahead, they also play an important role in rail transportation. Because trains are difficult to stop, the headlights must be visible from a ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |