Energy News  
ENERGY TECH
New additive yields longer-lasting lithium batteries
by Brooks Hays
Washington (UPI) Apr 22, 2019

As electric vehicles and other battery-powered technologies proliferate, scientists are searching for ways to make energy storage safer and more resilient.

One team of researchers has found a way to prolong battery life of lithium metal batteries. When scientists added a nano-coating of boron nitride to the electrolytes in lithium metal batteries, the batteries were more stable and lasted longer.

Lithium ion batteries are used in everything from electric cars to smart phones, but they aren't very energy dense and the liquid electrolyte inside them is flammable. As a result of their instability, the batteries have a relatively short life.

Batteries with a lithium metal anode, instead of a graphite anode, can store more energy and deliver a more powerful charge. But the anode's lithium plating can birth deformities called dendrites. The branch-like growths can penetrate the membrane wall, the separator between the anode and cathode, compromising the battery's safety and performance.

"We decided to focus on solid, ceramic electrolytes. They show great promise in improving both safety and energy density, as compared with conventional, flammable electrolytes in lithium ion batteries," Yuan Yang, assistant professor of materials science and engineering at Columbia University, said in a news release. "We are particularly interested in rechargeable solid-state lithium batteries because they are promising candidates for next-generation energy storage."

Solid electrolytes are more powerful and stable than liquid electrolytes, and they can also curb lithium dendrite growth. But lithium causes most solid electrolytes to corrode.

"Lithium metal is indispensable for enhancing energy density and so it's critical that we be able to use it as the anode for solid electrolytes," said Qian Cheng, a postdoctoral research scientist at Columbia.

To successfully use lithium in a solid electrolyte battery, scientists had to find a chemically and mechanically stable interface -- an interface with a variety of qualities.

"It is essential that the interface not only be highly electronically insulating, but also ionically conducting in order to transport lithium ions," Cheng said. "Plus, this interface has to be super-thin to avoid lowering the energy density of batteries."

In the lab, scientists deposited a thin protective layer of a boron nitride nano-film between the lithium metal and the solid electrolyte, the ionic conductor. Researchers created the nano-film with intrinsic defects that allowed lithium ions to travel through it.

"It's the perfect material to function as a barrier that prevents the invasion of lithium metal to solid electrolyte," Cheng said. "Like a bullet-proof vest, we've developed a lithium-metal-proof 'vest' for unstable solid electrolytes and, with that innovation, achieved long cycling lifetime lithium metal batteries."

Researchers are now testing the boron nitride nano-film with several different types of solid electrolytes. They expect the new technology -- described this week in the journal Joule -- to be used in the near future to create solid-state batteries with improved performance and longer lifetimes.


Related Links
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
New discovery makes fast-charging, better performing lithium-ion batteries possible
Troy NY (SPX) Apr 17, 2019
Creating a lithium-ion battery that can charge in a matter of minutes but still operate at a high capacity is possible, according to research from Rensselaer Polytechnic Institute just published in Nature Communications. This development has the potential to improve battery performance for consumer electronics, solar grid storage, and electric vehicles. A lithium-ion battery charges and discharges as lithium ions move between two electrodes, called an anode and a cathode. In a traditional lithium- ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Lights out around the globe for Earth Hour environmental campaign

Iraq needs three years on Iran power: parliament speaker

2018 spike in energy demand spells climate trouble: IEA

Forget about coal - broadband is the best bet for rural America

ENERGY TECH
Physicists improve understanding of heat and particle flow in the edge of a fusion device

New discovery makes fast-charging, better performing lithium-ion batteries possible

Unexpected properties uncovered in recently discovered superconductor

Fuel cell advance a breath of fresh air for future power alternative

ENERGY TECH
The complicated future of offshore wind power in the US

SeaPlanner to support marine coordination for Taiwan's Formosa I Offshore Wind Farm

E.ON announces start of construction on South Texas windfarm

DNV GL to deliver 5-minute energy forecast pilot for Australia's Ararat Wind Farm

ENERGY TECH
The interface makes the difference in Perovskite-based solar cells

Stability improvement under high efficiency - next stage development of perovskite solar cells

Solar evaporator offers a fresh route to fresh water

Renewables are a better investment than carbon capture for tackling climate change

ENERGY TECH
Japan turns to foreigners to decommission Fukushima plant

Framatome invests 12.6 million euro on its site of Ugine and inaugurates its new VAR furnace

Framatome delivers GAIA fuel assemblies to complete first Enhanced Accident Tolerant Fuel concept

telent wins IT and comms contract for UK's first new nuclear plant in 25 years

ENERGY TECH
Tracking sludge flow for better wastewater treatment and more biogas

OU engineers discover novel role of water in production of renewable fuels

Mega-order from Finland for Dutch energy technology

Scientists turn back evolutionary clock to develop high-CO2-tolerant microalgae

ENERGY TECH
China blasts Pompeo 'lies' on Venezuela

Turkey hopeful US will extend waiver on Iran sanctions

EU Parliament rejects bid to strip Exxon lobbyists of access

Amazon tribe protests Ecuador's oil exploration plans

ENERGY TECH
On climate change, a shift towards civil disobedience

Amid intense drought, deadly rains lash Afghanistan

Using Space Systems for Climate Control

Study looks to iron from microbes for climate help









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.