New additive yields longer-lasting lithium batteries by Brooks Hays Washington (UPI) Apr 22, 2019 As electric vehicles and other battery-powered technologies proliferate, scientists are searching for ways to make energy storage safer and more resilient. One team of researchers has found a way to prolong battery life of lithium metal batteries. When scientists added a nano-coating of boron nitride to the electrolytes in lithium metal batteries, the batteries were more stable and lasted longer. Lithium ion batteries are used in everything from electric cars to smart phones, but they aren't very energy dense and the liquid electrolyte inside them is flammable. As a result of their instability, the batteries have a relatively short life. Batteries with a lithium metal anode, instead of a graphite anode, can store more energy and deliver a more powerful charge. But the anode's lithium plating can birth deformities called dendrites. The branch-like growths can penetrate the membrane wall, the separator between the anode and cathode, compromising the battery's safety and performance. "We decided to focus on solid, ceramic electrolytes. They show great promise in improving both safety and energy density, as compared with conventional, flammable electrolytes in lithium ion batteries," Yuan Yang, assistant professor of materials science and engineering at Columbia University, said in a news release. "We are particularly interested in rechargeable solid-state lithium batteries because they are promising candidates for next-generation energy storage." Solid electrolytes are more powerful and stable than liquid electrolytes, and they can also curb lithium dendrite growth. But lithium causes most solid electrolytes to corrode. "Lithium metal is indispensable for enhancing energy density and so it's critical that we be able to use it as the anode for solid electrolytes," said Qian Cheng, a postdoctoral research scientist at Columbia. To successfully use lithium in a solid electrolyte battery, scientists had to find a chemically and mechanically stable interface -- an interface with a variety of qualities. "It is essential that the interface not only be highly electronically insulating, but also ionically conducting in order to transport lithium ions," Cheng said. "Plus, this interface has to be super-thin to avoid lowering the energy density of batteries." In the lab, scientists deposited a thin protective layer of a boron nitride nano-film between the lithium metal and the solid electrolyte, the ionic conductor. Researchers created the nano-film with intrinsic defects that allowed lithium ions to travel through it. "It's the perfect material to function as a barrier that prevents the invasion of lithium metal to solid electrolyte," Cheng said. "Like a bullet-proof vest, we've developed a lithium-metal-proof 'vest' for unstable solid electrolytes and, with that innovation, achieved long cycling lifetime lithium metal batteries." Researchers are now testing the boron nitride nano-film with several different types of solid electrolytes. They expect the new technology -- described this week in the journal Joule -- to be used in the near future to create solid-state batteries with improved performance and longer lifetimes.
New discovery makes fast-charging, better performing lithium-ion batteries possible Troy NY (SPX) Apr 17, 2019 Creating a lithium-ion battery that can charge in a matter of minutes but still operate at a high capacity is possible, according to research from Rensselaer Polytechnic Institute just published in Nature Communications. This development has the potential to improve battery performance for consumer electronics, solar grid storage, and electric vehicles. A lithium-ion battery charges and discharges as lithium ions move between two electrodes, called an anode and a cathode. In a traditional lithium- ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |