|
. | . |
|
by Staff Writers Upton NY (SPX) May 17, 2012
Hydrogen gas offers one of the most promising sustainable energy alternatives to limited fossil fuels. But traditional methods of producing pure hydrogen face significant challenges in unlocking its full potential, either by releasing harmful carbon dioxide into the atmosphere or requiring rare and expensive chemical elements such as platinum. Now, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have developed a new electrocatalyst that addresses one of these problems by generating hydrogen gas from water cleanly and with much more affordable materials. The novel form of catalytic nickel-molybdenum-nitride - described in a paper published online May 8, 2012 in the journal Angewandte Chemie International Edition - surprised scientists with its high-performing nanosheet structure, introducing a new model for effective hydrogen catalysis. "We wanted to design an optimal catalyst with high activity and low costs that could generate hydrogen as a high-density, clean energy source," said Brookhaven Lab chemist Kotaro Sasaki, who first conceived the idea for this research. "We discovered this exciting compound that actually outperformed our expectations."
Goldilocks chemistry To justify the effort, the amount of energy put into the reaction must be as small as possible while still exceeding the minimum required by thermodynamics, a figure associated with what is called overpotential. For a catalyst to facilitate an efficient reaction, it must combine high durability, high catalytic activity, and high surface area. The strength of an element's bond to hydrogen determines its reaction level - too weak, and there's no activity; too strong, and the initial activity poisons the catalyst. "We needed to create high, stable activity by combining one non-noble element that binds hydrogen too weakly with another that binds too strongly," said James Muckerman, the senior chemist who led the project. "The result becomes this well-balanced Goldilocks compound - just right." "We needed to introduce another element to alter the electronic states of the nickel-molybdenum, and we knew that nitrogen had been used for bulk materials, or objects larger than one micrometer," said research associate Wei-Fu Chen, the paper's lead author. "But this was difficult for nanoscale materials, with dimensions measuring billionths of a meter." The scientists expected the applied nitrogen to modify the structure of the nickel-molybdenum, producing discrete, sphere-like nanoparticles. But they discovered something else. Subjecting the compound to a high-temperature ammonia environment infused the nickel-molybdenum with nitrogen, but it also transformed the particles into unexpected two-dimensional nanosheets. The nanosheet structures offer highly accessible reactive sites - consider the surface area difference between bed sheets laid out flat and those crumpled up into balls - and therefore more reaction potential. Using a high-resolution transmission microscope in Brookhaven Lab's Condensed Matter Physics and Materials Science Department, as well as x-ray probes at the National Synchrotron Light Source, the scientists determined the material's 2D structure and probed its local electronic configurations. "Despite the fact that metal nitrides have been extensively used, this is the first example of one forming a nanosheet," Chen said. "Nitrogen made a huge difference - it expanded the lattice of nickel-molybdenum, increased its electron density, made an electronic structure approaching that of noble metals, and prevented corrosion."
Hydrogen future While this catalyst does not represent a complete solution to the challenge of creating affordable hydrogen gas, it does offer a major reduction in the cost of essential equipment. The team emphasized that the breakthrough emerged through fundamental exploration, which allowed for the surprising discovery of the nanosheet structure. "Brookhaven Lab has a very active fuel cell and electrocatalysis group," Muckerman said. "We needed to figure out fundamental approaches that could potentially be game-changing, and that's the spirit in which we're doing this work. It's about coming up with a new paradigm that will guide future research." Additional collaborators on this research were: Anatoly Frenkel of Yeshiva University, Nebojsa Marinkovic of the University of Delaware, and Chao Ma, Yimei Zhu and Radoslav Adzic of Brookhaven Lab. The research was funded by Brookhaven's Laboratory Directed Research and Development (LDRD) Program. The National Sychrotron Light Source and other Brookhaven user facilities are supported by the DOE Office of Science. Scientific Paper: "Hydrogen-Evolution Catalysts Based on Non-Nobel Metal Nickel-Molybdenum Nitride Nanosheets"
Related Links Brookhaven National Laboratory Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |