Nanoalloys 10 times as effective as pure platinum in fuel cells by Staff Writers Gothenburg, Sweden (SPX) May 30, 2017
A new type of nanocatalyst can result in the long-awaited commercial breakthrough for fuel cell cars. Research results from Chalmers University of Technology and Technical University of Denmark show that it is possible to significantly reduce the need for platinum, a precious and rare metal, by creating a nanoalloy using a new production technique. The technology is also well suited for mass production. Even though there have been fuel cell cars for about fifty years, advances have not led to a commercial breakthrough. The catalysts in today's fuel cells require large amounts of platinum, which is one of the world's most expensive metals. "A nano solution is needed to mass-produce resource-efficient catalysts for fuel cells. With our method, only one tenth as much platinum is needed for the most demanding reactions. This can reduce the amount of platinum required for a fuel cell by about 70 per cent", says Bjorn Wickman, researcher at the Department of Physics at Chalmers University of Technology. If this level of efficiency is possible to achieve in a fuel cell, the amount of required platinum would be comparable to what is used in an ordinary car catalytic converter. "Hopefully, this will allow fuel cells to replace fossil fuels and also be a complement to battery-powered cars", says Bjorn Wickman. Previous research has shown that it is possible to mix platinum with other metals, such as yttrium, to reduce the amount of platinum in a fuel cell. Even so, no one has yet managed to create alloys with these metals in nanoparticle form in a manner that can be used for large-scale production. The major problem has been that yttrium oxidizes instead of forming an alloy with the platinum. This problem has now been solved by Chalmers researchers by combining the metals in a vacuum chamber using a technique called sputtering. The result is a nanometre-thin film of the new alloy that allows mass-produced platinum and yttrium fuel cell catalysts. To use the new material, today's fuel cells need to change slightly, but doing so creates incredible opportunities. "When we can use our resources better, we save both the environment and lower costs. Fuel cells convert chemical energy into electrical energy using hydrogen and oxygen - with water as the only product. They have huge potential for sustainable energy solutions in transport, portable electronics and energy", says Niklas Lindahl, researcher at the Department of Physics at Chalmers. The results were recently published in the journal Advanced Materials Interfaces: "High Specific and Mass Activity for the Oxygen Reduction Reaction for Thin Film Catalysts of Sputtered Pt3Y"
Amherst MA (SPX) May 30, 2017 A lightweight, comfortable jacket that can generate the power to light up a jogger at night may sound futuristic, but materials scientist Trisha Andrew at the University of Massachusetts Amherst could make one today. In a new paper this month, she and colleagues outline how they have invented a way to apply breathable, pliable, metal-free electrodes to fabric and off-the-shelf clothing so it fee ... read more Related Links Chalmers University of Technology Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |