NREL pioneers better way to make renewable hydrogen by Staff Writers Golden CO (SPX) Jan 18, 2017
Scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) developed a method which boosts the longevity of high-efficiency photocathodes in photoelectrochemical water-splitting devices. Using a photoelectrochemical (PEC) device is a promising way to produce hydrogen. A PEC cell absorbs sunlight and converts that energy into hydrogen and oxygen by splitting water molecules. Unfortunately, high efficiency devices developed to date quickly degrade in the acidic solution to which the cell is exposed. The challenge of making a more durable cell must be overcome before renewable hydrogen from PEC devices can become commercially viable. The concept of using an integrated tandem cell based on the NREL high-efficiency tandem solar cell to split water and produce hydrogen was developed 18 years ago by research fellow John Turner, who has been with the laboratory since 1979. He designed a tandem solar cell containing layers of gallium indium phosphide (GaInP2) and gallium arsenide (GaAs) semiconductors to absorb the sunlight and produce the power necessary for the photoelectrochemical water-splitting reaction. Turner's device held the record for the highest solar-to-hydrogen efficiency, until it was finally eclipsed in 2015. The paper, "A graded catalytic-protective layer for an efficient and stable water-splitting photocathode," appears in the new issue of Nature Energy. Jing Gu, a postdoc with Turner, lead the effort. She is now an assistant professor at San Diego State University. Along with Turner, the co-authors all were from NREL: Jing Gu, Jeffery A. Aguiar, Suzanne Ferrere, Xerxes Steirer, Yong Yan, Chuanxiao Xiao, James L. Young, Mowafak Al-Jassim, and Nathan R. Neale. This Nature Energy paper describes how NREL researchers determined that greater photocathode stability and high catalytic activity can be achieved by depositing and annealing a bilayer of amorphous titanium dioxide (TiOx) and molybdenum sulfide (MoSx) onto GaInP2. During a 20-hour durability test, the photocathode retained 80 percent of the initial electricity generated. The TiOx and MoSx produced a catalyst protection layer and served to protect the GaInP2 from the acidic solution. "This paper, along with our previous paper on surface protection published in Nature Materials, shows that considerable improvement in the stability and activity of these photoelectrochemical devices can be made," Turner said. Hydrogen is currently used to upgrade crude oil for fuels production and in the synthesis of ammonia, critically important for food production. Benefits from the NREL research come by producing hydrogen from renewable sources, instead of the steam reforming natural gas process now commonly in use. That process releases carbon dioxide into the atmosphere, thereby contributing to the greenhouse effect.
Related Links National Renewable Energy Laboratory Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |