Energy News  
ENERGY TECH
Materials scientists uncover source of degradation in sodium batteries
by Staff Writers
Santa Barbara CA (SPX) Jul 22, 2019

file illustration

Batteries power our lives: we rely on them to keep our cell phones and laptops buzzing and our hybrid and electric cars on the road. But ever-increasing adoption of the most commonly used lithium-ion batteries may actually lead to increased cost and potential shortages of lithium - which is why sodium-ion batteries are being researched intensely as a possible replacement. They perform well, and sodium, an alkali metal closely related to lithium, is cheap and abundant.

The challenge? Sodium-ion batteries have shorter lifetimes than their lithium-based siblings.

Now, UC Santa Barbara computational materials scientist Chris Van de Walle and colleagues have uncovered a reason for this loss of capacity in sodium batteries: the unintended presence of hydrogen, which leads to degradation of the battery electrode. Van de Walle and co-authors Zhen Zhu and Hartwin Peelaers published their findings in the journal Chemistry of Materials.

"Hydrogen is commonly present during the fabrication of the cathode material, or it can be incorporated from the environment or from the electrolyte," said Zhu, who is now at Google.

"Hydrogen is known to strongly affect the properties of electronic materials, so we were curious about its effect on NaMnO2 (sodium manganese dioxide), a common cathode material for sodium-ion batteries." To study this, the researchers used computational techniques that are capable of predicting the structural and chemical effects that arise from the presence of impurities.

Professor Peelaers, now at the University of Kansas, described the key findings: "We quickly realized that hydrogen can very easily penetrate the material, and that its presence enables the manganese atoms to break loose from the manganese-oxide backbone that holds the material together. This removal of manganese is irreversible and leads to a decrease in capacity and, ultimately, degradation of the battery."

The studies were performed in Van De Walle's Computational Materials Group at UC Santa Barbara.

"Earlier research had shown that loss of manganese could take place at the interface with the electrolyte or could be associated with a phase transition, but it did not really identify a trigger," Van de Walle said.

"Our new results show that the loss of manganese can occur anywhere in the material, if hydrogen is present. Because hydrogen atoms are so small and reactive, hydrogen is a common contaminant in materials. Now that its detrimental impact has been flagged, measures can be taken during fabrication and encapsulation of the batteries to suppress incorporation of hydrogen, which should lead to better performance."

In fact, the researchers suspect that even the ubiquitous lithium-ion batteries may suffer from the ill effects of unintended hydrogen incorporation. Whether this causes fewer problems because fabrication methods are further advanced in this mature materials system, or because there is a fundamental reason for the lithium batteries to be more resistant to hydrogen is not clear at present, and will be an area of future research.


Related Links
University of California - Santa Barbara
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Highview Power Unveils CRYOBattery, World's First Giga-Scale Cryogenic Battery
London, UK (SPX) Jul 01, 2019
Highview Power, the global leader in long-duration energy storage solutions, is pleased to announce that it has developed a modular cryogenic energy storage system, the CRYOBattery, that is scalable up to multiple gigawatts of energy storage and can be located anywhere. This technology reaches a new benchmark for a levelized cost of storage (LCOS) of $140/MWh for a 10-hour, 200 MW/2 GWh system. Highview Power's cryogenic energy storage system is equivalent in performance to, and could potentially ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Global warming = more energy use = more warming

Big energy discussion 'scrubbed from record' at UN climate talks

New York to get one of world's most ambitious carbon reduction plans

Wartsila and Summit sign Bangladesh's biggest ever service agreement to maintain Summit's 464 MW power plants

ENERGY TECH
A new way to measure the stability of next-generation magnetic fusion devices

Tiny granules can help bring clean and abundant fusion power to Earth

Highview Power Unveils CRYOBattery, World's First Giga-Scale Cryogenic Battery

Researchers introduce novel heat transport theory in quest for efficient thermoelectrics

ENERGY TECH
Kenya launches Africa's biggest wind farm

Stanford study shows how to improve production at wind farms

Windmill protesters placed on Dutch terror list

Can sound protect eagles from wind turbine collisions?

ENERGY TECH
Solar power with a free side of drinking water

Twenty overlooked benefits of distributed solar energy

Nanobowl arrays endow perovskite solar cells with iridescent colors

Window film could even out the indoor temperature using solar energy

ENERGY TECH
US hits Iran 'nuclear enrichment network' with sanctions

IAEA head to step down next year on health grounds: diplomats

GE Hitachi Nuclear Energy awarded contract to support decommissioning of Oyster Creek

Get your fax right: Bungling officials spark Japan nuclear scare

ENERGY TECH
Left out to dry: A more efficient way to harvest algae biomass

Symbiotic upcycling: Turning 'low value' compounds into biomass

How to capture waste heat energy with improved polymers

Total starts production at French biofuel refinery

ENERGY TECH
Saudi Arabia has decided to host US troops: Saudi defence ministry

Iran Guards seize British-flagged tanker in Strait of Hormuz

Gulf tensions rise as US downs Iranian drone

Canadian platform spills 3,200 gallons of oil-mix into Atlantic

ENERGY TECH
More 'reactive' land surfaces cooled the Earth down

Dramatic warming projected in world's major cities by 2050

UN chief makes climate change plea in cyclone-hit Mozambique

US banks must consider climate risk: Fed's Powell









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.