Massive trove of battery and molecule data released to public by Staff Writers Berkeley CA (SPX) Jun 14, 2016
The Materials Project, a Google-like database of material properties aimed at accelerating innovation, has released an enormous trove of data to the public, giving scientists working on fuel cells, photovoltaics, thermoelectrics, and a host of other advanced materials a powerful tool to explore new research avenues. But it has become a particularly important resource for researchers working on batteries. Co-founded and directed by Lawrence Berkeley National Laboratory (Berkeley Lab) scientist Kristin Persson, the Materials Project uses supercomputers to calculate the properties of materials based on first-principles quantum-mechanical frameworks. It was launched in 2011 by the U.S. Department of Energy's (DOE) Office of Science. In 2012, DOE established the Joint Center for Energy Storage Resarch (JCESR), a DOE Energy Innovation Hub, which significantly enhanced the Materials Project with new simulations of next-generation battery electrodes and liquid organic electrolytes. "This massive amount of precise data released through the Materials Project will have a profound and lasting impact on the battery research community," said JCESR Director George Crabtree. "This is a great example of the way Berkeley Lab and other JCESR partners share scientific knowledge to advance the scientific frontier." The idea behind the Materials Project is that it can save researchers time by predicting material properties without needing to synthesize the materials first in the lab. It can also suggest new candidate materials that experimentalists had not previously dreamed up. With a user-friendly web interface, users can look up the calculated properties, such as voltage, capacity, band gap, and density, for tens of thousands of materials.
Data release includes two new apps The sheer volume and scope of the data is unprecedented, said Persson, who is also a professor in UC Berkeley's Department of Materials Science and Engineering. "As far as the multivalent cathodes, there's nothing similar in the world that exists," she said. "To give you an idea, experimentalists are usually able to focus on one of these materials at a time. Using calculations, we've added data on 1,500 different compositions." While other research groups have made their data publicly available, what makes the Materials Project so useful are the online tools to search all that data. The recent release includes two new web apps - the Molecules Explorer and the Redox Flow Battery Dashboard - plus an add-on to the Battery Explorer web app enabling researchers to work with other ions in addition to lithium. "Not only do we give the data freely, we also give algorithms and software to interpret or search over the data," Persson said. The Redox Flow Battery app gives scientific parameters as well as techno-economic ones, so battery designers can quickly rule out a molecule that might work well but be prohibitively expensive. The Molecules Explorer app will be useful to researchers far beyond the battery community. "For multivalent batteries it's so hard to get good experimental data," Persson said. "The calculations provide rich and robust benchmarks to assess whether the experiments are actually measuring a valid intercalation process or a side reaction, which is particularly difficult for multivalent energy technology because there are so many problems with testing these batteries."
New data has led to new discovery "These materials may not work well the first time you make them," Persson said. "You have to be persistent; for example you may have to make the material very phase pure or smaller than a particular particle size and you have to test them under very controlled conditions. There are people who have actually tried this material before and discarded it because they thought it didn't work particularly well. The power of the computations and the design metrics we have uncovered with their help is that it gives us the confidence to keep trying." The researchers were able to double the energy capacity of what had previously been achieved for this kind of multivalent battery. The study has been published in the journal Energy and Environmental Science in an article titled, "A High Capacity Thiospinel Cathode for Mg Batteries." "The new multivalent battery works really well," Persson said. "It's a significant advance and an excellent proof-of-concept for computational predictions as a valuable new tool for battery research."
Growing every day One of those users is Dane Morgan, a professor of engineering at the University of Wisconsin-Madison who develops new materials for a wide range of applications, including highly active catalysts for fuel cells, stable low-work function electron emitter cathodes for high-powered microwave devices, and efficient, inexpensive, and environmentally safe solar materials. "The Materials Project has enabled some of the most exciting research in my group," Morgan said. "By providing easy access to a huge database, as well as tools to process that data for thermodynamic predictions, the Materials Project has enabled my group to rapidly take on materials design projects that would have been prohibitive just a few years ago." More materials are being calculated and added to the database every day. In two years, Persson expects another trove of data to be released to the public. "This is the way to reach a significant part of the research community, to reach students while they're still learning material science," she said. "It's a teaching tool. It's a science tool. It's unprecedented." Supercomputing clusters at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility hosted at Berkeley Lab, provide the infrastructure for the Materials Project.
Related Links Lawrence Berkeley National Laboratory Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |